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BACKGROUND

• Healthcare resource allocation is often made under uncertainty due to imperfect information in economic 
evaluations. 

• Collecting additional evidence can reduce uncertainty but comes with higher costs.  Value of Information (VoI) 
analysis provides a framework to assess whether reducing uncertainty is worth the investment.1 

• The Expected Value of Partial Perfect Information (EVPPI), the value of gaining perfect information on a 
subset of uncertain cost-effectiveness model parameters, can be estimated using Nested Monte Carlo (NMC), 
regression-based methods (Gaussian Process (GP), Multivariate Adaptive Regression Splines (MARS), and 
Bayesian Additive Regression Trees (BART)), Multi-Level Monte Carlo (MLMC), and other methods.2-3 

• However, their accuracy remains underexplored.

OBJECTIVE

This study aims to conduct a 
simulation study to evaluate the 
reliability and efficiency of 
different VOI methods and 
provide insights on selecting 
methods suited to specific 
circumstances.

Model simulation
• Generic R code was developed to generate 

Markov models with flexible structures, 
treatments, and parameters.

• Transition probabilities generated via copulas to 
account for correlation.

• 12,000 simulations conducted to ensure estimate 
accuracy.

Measure performance
Linear regression used:
• Dependent variable = NMC estimates
• Independent variables = estimates from other 

methods
Stratified by number of health states and 
treatment options (↑ = more complex models)
Performance metrics: R²,  slope, coverage 
probability, and scatter plots.

RESULTS

variable Method Slope R squared Bias
Costs GP 0.82 0.76 0.84

MARS 1.03 0.93 -27.38

BART 0.96 0.97 19.91

MLMC 1.02 0.90 -39.18

Utilities GP 0.71 0.65 56.53

MARS 1.02 0.97 -22.28

BART 0.97 0.97 37.02

MLMC 1.01 0.96 -35.67

Transition 

probabilities

GP 1.08 0.91 -333.16

MARS 1.12 0.71 -864.08

BART 1.19 0.83 -727.17

MLMC 1.00 0.99 8.20
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When considering model complexity:
• MLMC maintained superior performance for transition 

probabilities as complexity increased.
• BART consistently produced the most accurate estimates for 

cost and utility in more complex models.
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Figure 2: Stratified Slope Results

Figure 1: Method – Simulation model

Figure 3: Scatter plots – Transition probabilityTable 1: Summary Results

METHOD

Table 1 summarizes the results 
for each parameter and method 
across all performance measures:
• BART performed best for cost.
• MLMC and BART provided the 

most reliable estimates for 
utility.

• MLMC outperformed all 
others for transition 
probabilities.

Conclusions:
• BART is preferred for simple models with uncorrelated 

parameters 
• MLMC is recommended when parameters are correlated.

Figure 2 shows the stratified slope results, broken down by the number of health 
states and treatments. 

Figure 3 is the scatter plots show the results from each method 
compared against the gold-standard NMC estimates
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