

Evaluating the Reliability of Value of Information Methods: A Simulation-Based Comparison

Qian Xin, MSc¹, Abdul-Lateef Haji-Ali, PhD², Mark Strong, PhD³, Michael Jon O'Donnell, PhD¹, Howard Thom, PhD¹

¹University of Bristol, Bristol, United Kingdom; ²Heriot-Watt University, Edinburgh, United Kingdom; ³University of Sheffield, Sheffield, United Kingdom.

BACKGROUND

- Healthcare resource allocation is often made under **uncertainty due to imperfect information** in economic evaluations.
- Collecting additional evidence can reduce uncertainty but comes with higher costs. **Value of Information (VOI)** analysis provides a framework to assess whether reducing uncertainty is worth the investment.¹
- The **Expected Value of Partial Perfect Information (EVPI)**, the value of gaining **perfect information on a subset** of uncertain cost-effectiveness model parameters, can be estimated using Nested Monte Carlo (NMC), regression-based methods (Gaussian Process (GP), Multivariate Adaptive Regression Splines (MARS), and Bayesian Additive Regression Trees (BART)), Multi-Level Monte Carlo (MLMC), and other methods.²⁻³
- However, their **accuracy** remains underexplored.

METHOD

Model simulation

- Generic R code** was developed to generate Markov models with flexible structures, treatments, and parameters.
- Transition probabilities** generated via copulas to account for correlation.
- 12,000** simulations conducted to ensure estimate accuracy.

Measure performance

Linear regression used:

- Dependent variable = NMC estimates
- Independent variables = estimates from other methods

Stratified by number of health states and treatment options (\uparrow = more complex models)

Performance metrics: R^2 , slope, coverage probability, and scatter plots.

RESULTS

Table 1: Summary Results

variable	Method	Slope	R squared	Bias
Costs	GP	0.82	0.76	0.84
	MARS	1.03	0.93	-27.38
	BART	0.96	0.97	19.91
	MLMC	1.02	0.90	-39.18
Utilities	GP	0.71	0.65	56.53
	MARS	1.02	0.97	-22.28
	BART	0.97	0.97	37.02
	MLMC	1.01	0.96	-35.67
Transition probabilities	GP	1.08	0.91	-333.16
	MARS	1.12	0.71	-864.08
	BART	1.19	0.83	-727.17
	MLMC	1.00	0.99	8.20

Figure 2: Stratified Slope Results

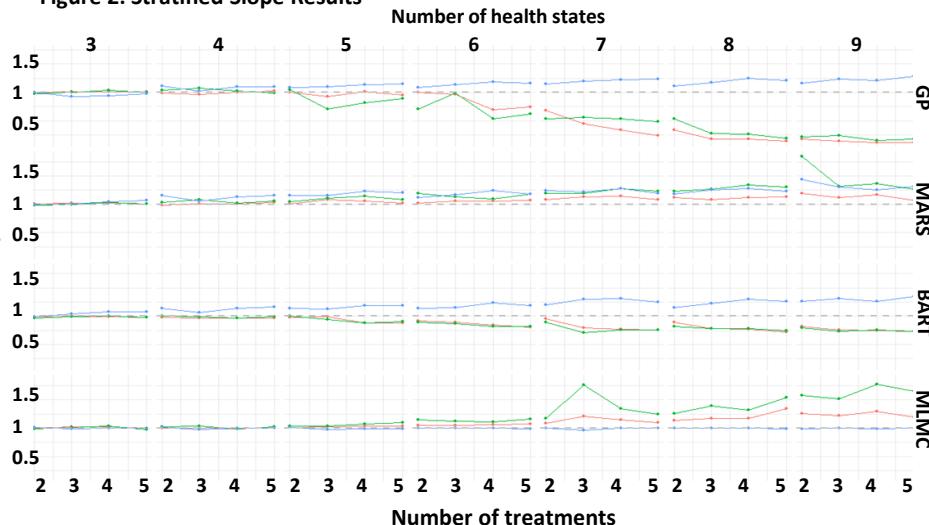
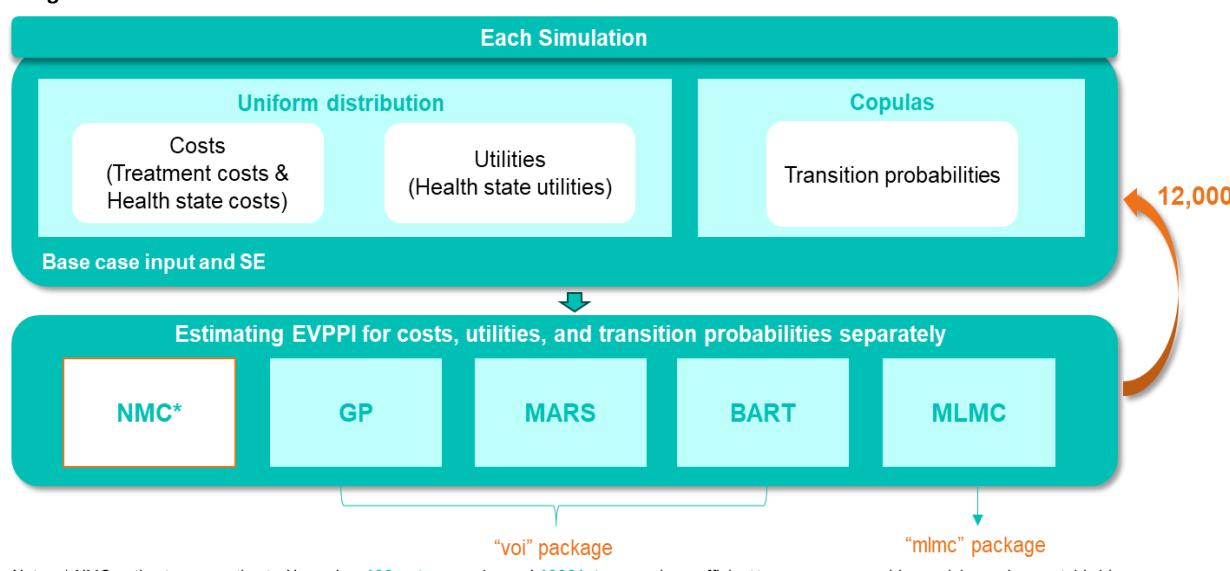



Figure 2 shows the stratified slope results, broken down by the number of health states and treatments.

Figure 1: Method – Simulation model

Notes: * NMC estimates are estimated based on 100 outer samples and 1000 inner samples, sufficient to ensure reasonable precision and acceptable bias. All models were developed in R 4.4.1 and executed on the high-performance computing platform. All code are provided in a GitHub repository.

Figure 3: Scatter plots – Transition probability

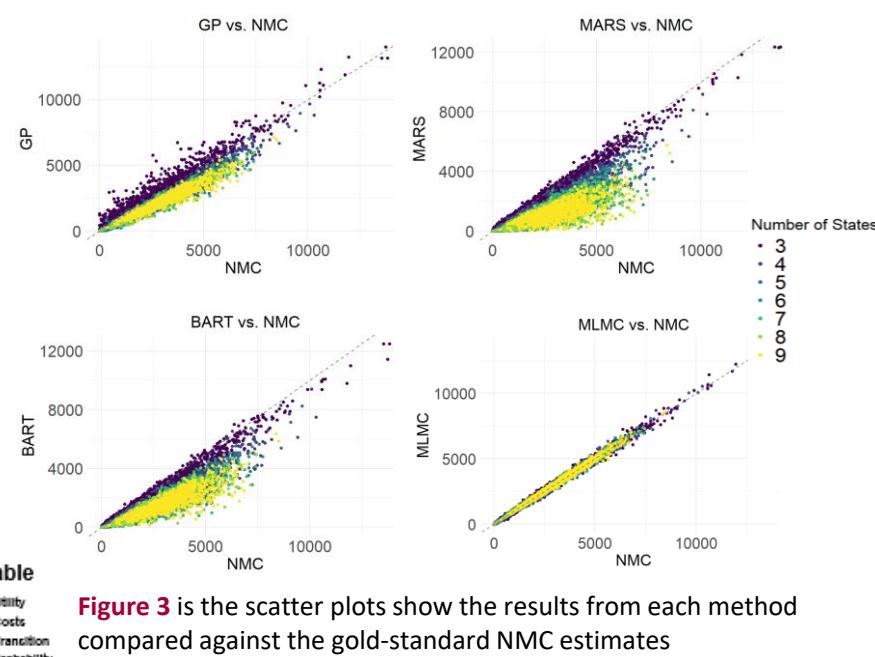


Figure 3 is the scatter plots show the results from each method compared against the gold-standard NMC estimates

When considering model complexity:

- MLMC maintained superior performance for **transition probabilities as complexity increased**.
- BART consistently produced the **most accurate** estimates for **cost and utility** in more complex models.

Conclusions:

- BART is preferred for simple models with uncorrelated parameters
- MLMC is recommended when parameters are correlated.

Reference:

- Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force Rothery, Claire et al. Value in Health, Volume 23, Issue 3, 277 – 286
- Expected Value of Partially Perfect Information (EVPI) [online]. (2016). York: York Health Economics Consortium; 2016. <https://yhec.co.uk/glossary/expected-value-of-partially-perfect-information-evpi/>
- Strong, Mark, Jeremy E. Oakley, and Alan Brennan. "Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach." Medical Decision Making 34.3 (2014): 311-326.