
Development of an AI-Powered Tool to Accelerate and Enhance Systematic 
Literature Reviews for Evidence-Based Decision-Making in Clinical Research

• Systematic literature reviews (SLR) are essential for synthesizing scientific evidence, particularly

in clinical research. These processes remain highly time-consuming and labour-intensive due to

the need to screen large volumes of publications.

• Traditional methods, such as BM25-based search engines or manual filtering, often fail to

achieve satisfactory coverage without extensive manual review¹.

• This limitation underscores the need for hybrid approaches combining artificial intelligence (AI)

and human validation to improve efficiency and accuracy.

• Advances in Natural Language Processing (NLP) and the emergence of Large Language Models

(LLMs) have demonstrated remarkable capabilities in automating text processing tasks². Several

works report time savings up to 68.5% and improved precision and consistency compared with

traditional approaches³,⁴.

• Full automation remains limited by challenges in achieving comprehensive coverage and

generalizability comparable to expert review. Consequently, hybrid approaches integrating

human oversight are essential, leveraging the speed of LLMs, while preserving the

interpretative rigor of experts⁵.
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INTRODUCTION

• As shown in Figure 4, across the five replicated literature reviews used to test the semi-

automated framework, the AI shortlists reduced the number of abstracts requiring manual

screening by 46% to 91%.

• Nearly all articles identified by human experts were included in the AI shortlists, with only

two missed articles (reviews 2 and 5), corresponding to a recall above 96%.

• By designing a conservative prompting strategy, encouraging the model to answer

“UNCERTAIN” when appropriate, a high recall was maintained while further decreasing the

number of articles requiring manual assessment.

METHODS

RESULTS & DISCUSSION

CONCLUSION
The AI-assisted shortlisting method reduced abstract screening effort by 46–91% (2–10×

faster), while missing less than 5% of relevant studies, demonstrating both efficiency and

methodological rigor.

Experiments to evaluate the tool

• To evaluate the performance of the tool in pre-selecting the right articles for the reviewers,

we identified several published systematic reviews and tried to reproduce them.

• Using the public PubMed queries, the original sets of publications were retrieved. Then the

sets of publications manually screened by experts were compared to the shortlist

automatically screened by our AI-screening tool.

• Mistral-Large 2024 was the model used for all inferences.

Figure 4: Results of evaluation on 5 different literature reviews
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The AI-shortlisting of Title/Abstract reduced manual review of publications from 203 to 24.

Figure 1: Semi-automated Literature review using LLM to assess criteria given by reviewer
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Figure 2: Two-Step Automated Classification of Criterion: From LLM-Generated Examples to 
Few-Shot Evaluation of Title/Abstract
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The AI assistance in the developed tool intervenes at the second step of the literature review

process - the title/abstract screening based on reviewer-defined YES/NO criteria - following the

initial keyword-based search. The reviewer then manually reviews the AI shortlisted publications.

The LLM prompting framework is based on two steps:

1. Uncertainty-aware prompting

Tackles hallucinations by forcing explicit triage: YES (meets criteria), NO (does not meet criteria),

or UNCERTAIN (requires reviewer input). This ensures no false positives/negatives slip through

unchecked.

2. Few-shot learning

Provide examples of YES/NO/UNCERTAIN answers to the LLM, to help it internalize criterion and

prevent misaligned responses.

Figure 3: Process to evaluate the performance of the AI-Powered tool in Title/Abstract 
screening
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OBJECTIVE
This study aimed to develop and validate a semi-automated AI-powered tool to accelerate

and enhance the SLR process by semi-automating title/abstract screening, enhancing

efficacy and curtailing time consumption, while preserving methodological rigor and

adherence to established systematic review methodologies.
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