
● The study confirmed that a general-purpose LLM classifier guided by a well-designed prompt can be a 
more balanced and robust solution for RCT identification than a specialised tool. 3,11,12

● The Cochrane classifier's optimisation for high recall leads to a significant number of false positives, 
which can increase the workload for human reviewers in a double-screening scenario.

● The LLM classifier's superior F1-score highlights its ability to provide a more reliable and better 
balance between recall and precision for identifying likely RCTs, enabling review teams to manage 
datasets more efficiently.

● The LLM classifier's strong performance was achieved with a zero-shot approach, requiring only a 
dedicated prompt. This demonstrates that review teams can develop their own classifiers without 
relying on the Cochrane classifier, while still avoiding the need for model retraining.
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Takeaway A zero-shot, prompt-engineered large language model (LLM) identifies randomised controlled trials (RCTs) from titles and abstracts with greater overall 
accuracy and balance than the specialised Cochrane classifier.

● Identifying relevant study types is a critical and time-consuming step in conducting systematic 
reviews. 1,2,13

● Automating RCT identification can accelerate the review process by improving record filtering and 
workload assignment for review teams. 3,4

● Specialised tools, such as the Cochrane classifier, have been the traditional approach for this task, 
relying on machine learning models trained on specific datasets. 3,5

● Modern, general-purpose LLMs like GPT-4.1 offer a powerful and flexible alternative, capable of 
performing complex classification tasks with no prior task-specific training (i.e., "zero-shot"). 6–8

● This study compares a general-purpose LLM against a specialised benchmark tool to assess its 
effectiveness for RCT identification in a systematic review workflow.

● The prompt-engineered LLM classifier demonstrated superior overall performance versus the ground 
truth, achieving an F1-score of 0.74, considerably outperforming the Cochrane classifier’s score of 0.49.

● The LLM classifier showed a balanced performance profile with high accuracy (91.1%), high precision 
(78%), and strong recall (70%).

● The Cochrane classifier achieved a higher recall (86%) but at the cost of very low precision (33.7%) and 
overall accuracy (67.4%).

● The Cochrane classifier's low precision resulted in a high volume of false positives, incorrectly identifying 
a large number of non-RCTs as RCTs. 3

Classifier Accuracy Recall Precision F1-score
Zero-Shot LLM 0.91 0.70 0.78 0.74

Cochrane 0.67 0.86 0.34 0.49

Table 1: Results for the breast cancer data set, 2380 abstracts

● Reproducibility concerns were mitigated by lowering the temperature parameter, which reduced the 
randomness in the LLM’s outputs. 10

● Incorporating the LLM classifier into a literature review management system allows ease of data 
connectivity and minimal disruption to the screening workflow

● We propose that classifying titles and abstracts as likely-RCT or not-RCT, could be utilised to support 
screening, for example, not-RCTs could be quickly excluded with an acceptable low risk of missing 
eligible RCTs in suitable reviews (i.e. reviews where non RCT study designs are not eligible).

● A limitation of this study is that it was conducted using one dataset, further research on additional 
datasets could assess if these findings are consistent for other reviews. 
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Background
● A dataset of 2380 titles and abstracts, TIABs, manually screened for a breast cancer systematic 

literature review, was used for this study.

● A specialised prompt was developed to instruct a GPT-4.1 model to classify records as either a likely 
RCT or not likely an RCT in a zero-shot workflow.

● The pipeline initialises an LLM model (GPT-4.1) with adjustable parameters such as temperature (which 
influences the balance between predictability and creativity in generated text) to manage model 
behaviour. 10

● The temperature parameter was set to 0.1 to standardise model behaviour.

● The same dataset was also processed using the established Cochrane classifier for a direct 
comparison.

● Key performance metrics—accuracy, precision, recall, and F1-score—were calculated to provide a 
comprehensive assessment of each tool's classification capabilities. 9

● The performance of both classifiers was evaluated against a human-labeled ground truth.
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Figure 1: Confusion Matrix for Zero-Shot LLM Classification Figure 2: Confusion matrix for Cochrane Classification

Discussion

Conclusion
● A prompt-engineered GPT-4.1 provides a more balanced and effective solution for RCT identification than the Cochrane classifier.

● The LLM classifier’s substantially higher F1-score demonstrates its ability to effectively distinguish RCTs while minimising the false positives that can burden review teams.

● The LLM classifier's superior overall performance, achieved with a dedicated prompt without model training, makes it a more practical and efficient tool for resource-constrained systematic 
review workflows.
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