

Zero-Shot RCT Identification using Large Language Models: A Comparative Study with the Cochrane Classifier

SA107

Seye Abogunrin¹, Marie Lane¹, Roberto Rey Sieiro²

1 F. Hoffmann-La Roche Ltd, Basel, Switzerland

2 Roche Farma, S.A., Madrid, Spain

Takeaway

A zero-shot, prompt-engineered large language model (LLM) identifies randomised controlled trials (RCTs) from titles and abstracts with greater overall accuracy and balance than the specialised Cochrane classifier.

Background

- Identifying relevant study types is a critical and time-consuming step in conducting systematic reviews.^{1,2,13}
- Automating RCT identification can accelerate the review process by improving record filtering and workload assignment for review teams.^{3,4}
- Specialised tools, such as the Cochrane classifier, have been the traditional approach for this task, relying on machine learning models trained on specific datasets.^{3,5}
- Modern, general-purpose LLMs like GPT-4.1 offer a powerful and flexible alternative, capable of performing complex classification tasks with no prior task-specific training (i.e., "zero-shot").⁶⁻⁸
- This study compares a general-purpose LLM against a specialised benchmark tool to assess its effectiveness for RCT identification in a systematic review workflow.

Methods

- A dataset of 2380 titles and abstracts, TIABs, manually screened for a breast cancer systematic literature review, was used for this study.
- A specialised prompt was developed to instruct a GPT-4.1 model to classify records as either a likely RCT or not likely an RCT in a zero-shot workflow.
- The pipeline initialises an LLM model (GPT-4.1) with adjustable parameters such as temperature (which influences the balance between predictability and creativity in generated text) to manage model behaviour.¹⁰
- The temperature parameter was set to 0.1 to standardise model behaviour.
- The same dataset was also processed using the established Cochrane classifier for a direct comparison.
- Key performance metrics—accuracy, precision, recall, and F1-score—were calculated to provide a comprehensive assessment of each tool's classification capabilities.⁹
- The performance of both classifiers was evaluated against a human-labeled ground truth.

Results

- The prompt-engineered LLM classifier demonstrated superior overall performance versus the ground truth, achieving an F1-score of 0.74, considerably outperforming the Cochrane classifier's score of 0.49.
- The LLM classifier showed a balanced performance profile with high accuracy (91.1%), high precision (78%), and strong recall (70%).
- The Cochrane classifier achieved a higher recall (86%) but at the cost of very low precision (33.7%) and overall accuracy (67.4%).
- The Cochrane classifier's low precision resulted in a high volume of false positives, incorrectly identifying a large number of non-RCTs as RCTs.³

Classifier	Accuracy	Recall	Precision	F1-score
Zero-Shot LLM	0.91	0.70	0.78	0.74
Cochrane	0.67	0.86	0.34	0.49

Table 1: Results for the breast cancer data set, 2380 abstracts

Predicted Positive		Actually Positive	Actually Negative	
Predicted Positive	True Positives	286	False Positives	80
	False Negatives	124	True Negatives	1814

Figure 1: Confusion Matrix for Zero-Shot LLM Classification

Predicted Positive		Actually Positive	Actually Negative	
Predicted Positive	True Positives	354	False Positives	695
	False Negatives	56	True Negatives	1199

Figure 2: Confusion matrix for Cochrane Classification

Discussion

- The study confirmed that a general-purpose LLM classifier guided by a well-designed prompt can be a more balanced and robust solution for RCT identification than a specialised tool.^{3,11,12}
- The Cochrane classifier's optimisation for high recall leads to a significant number of false positives, which can increase the workload for human reviewers in a double-screening scenario.
- The LLM classifier's superior F1-score highlights its ability to provide a more reliable and better balance between recall and precision for identifying likely RCTs, enabling review teams to manage datasets more efficiently.
- The LLM classifier's strong performance was achieved with a zero-shot approach, requiring only a dedicated prompt. This demonstrates that review teams can develop their own classifiers without relying on the Cochrane classifier, while still avoiding the need for model retraining.

- Reproducibility concerns were mitigated by lowering the temperature parameter, which reduced the randomness in the LLM's outputs.¹⁰
- Incorporating the LLM classifier into a literature review management system allows ease of data connectivity and minimal disruption to the screening workflow.
- We propose that classifying titles and abstracts as likely-RCT or not-RCT, could be utilised to support screening, for example, not-RCTs could be quickly excluded with an acceptable low risk of missing eligible RCTs in suitable reviews (i.e. reviews where non RCT study designs are not eligible).
- A limitation of this study is that it was conducted using one dataset, further research on additional datasets could assess if these findings are consistent for other reviews.

Conclusion

- A prompt-engineered GPT-4.1 provides a more balanced and effective solution for RCT identification than the Cochrane classifier.
- The LLM classifier's substantially higher F1-score demonstrates its ability to effectively distinguish RCTs while minimising the false positives that can burden review teams.
- The LLM classifier's superior overall performance, achieved with a dedicated prompt without model training, makes it a more practical and efficient tool for resource-constrained systematic review workflows.

References:

- Bastian H, Glasziou P, Chalmers I. Seventy-Five Trials and Eleven Systematic Reviews a Day: How Will We Ever Keep Up? *PLOS Med*. 2010;7(9):e1000326. doi:10.1371/journal.pmed.1000326.
- Shojania KG, Sampson M, Ansari MT, et al. How Quickly Do Systematic Reviews Go Out of Date? A Survival Analysis. *Ann Intern Med*. 2007;147(4):224-233. doi:10.7326/0003-4819-147-4-200708210-00179.
- Thomas J, McDonald S, Noel-Storri A, et al. Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews. *J Clin Epidemiol*. 2021;133:140-151. doi:10.1016/j.jclinepi.2020.11.003.
- Cochrane Handbook – Chapter 22. Prospective approaches to accumulating and maintaining evidence. Version 6.5 (2024).
- EPPI-Reviewer Team. Machine learning functionality in EPPI-Reviewer (v10, web version). UCL; 2025.
- Brown TB, Mann B, Ryder N, et al. Language Models are Few-Shot Learners. *NeurIPS* 2020. arXiv:2005.14165.
- Kojima T, Gu SS, Reid M, Matsuo Y, Iwasawa Y. Large Language Models are Zero-Shot Reasoners. *NeurIPS* 2022. arXiv:2205.11916.
- Li M, Sun J, Tan X, et al. Evaluating the effectiveness of large language models in abstract screening: a comparative analysis. *Systematic Reviews*. 2024;13(1):219. doi:10.1186/s13643-024-02609-x.
- Manning CD, Raghavan P, Schütze H. *Introduction to Information Retrieval*. Cambridge University Press; 2008.
- OpenAI. Advanced usage: controllability, temperature and sampling. OpenAI Platform Docs. Link: <https://platform.openai.com/docs/guides/advanced-usage/controlling-outputs>
- Cochrane MECIR (Methods): Selecting studies to include in the review (C39–C42).
- Waffenschmidt S, Knelangen M, Sieben W, Bühn S, Pieper D. Single screening versus conventional double screening for study selection in systematic reviews: a methodological systematic review. *BMC Med Res Methodol*. 2019;19:132. doi:10.1186/s12874-019-0782-0.
- Abogunrin S, Muir JM, Zerbini C, Sarri G. How much can we save by applying artificial intelligence in evidence synthesis? Results from a pragmatic review to quantify workload efficiencies and cost savings. *Front Pharmacol*. 2025;16:1454245. doi:10.3389/fphar.2025.1454245.