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& Takeaway

accuracy and balance than the specialised Cochrane classifier.

Background

e |dentifying relevant study types is a critical and time-consuming step in conducting systematic

reviews. 1419

e Automating RCT identification can accelerate the review process by improving record filtering and
workload assignment for review teams.

e Specialised tools, such as the Cochrane classifier, have been the traditional approach for this task,
relying on machine learning models trained on specific datasets. *°

e Modern, general-purpose LLMs like GPT-4.1 offer a powerful and flexible alternative, capable of
performing complex classification tasks with no prior task-specific training (i.e., "zero-shot"). ¢®

e T[his study compares a general-purpose LLM against a specialised benchmark tool to assess its
effectiveness for RCT identification in a systematic review workflow.

1 Results

e The prompt-engineered LLM classifier demonstrated superior overall performance versus the ground
truth, achieving an F1-score of 0.74, considerably outperforming the Cochrane classifier’s score of 0.49.

e The LLM classifier showed a balanced performance profile with high accuracy (91.1%), high precision
(78%), and strong recall (70%).

e The Cochrane classifier achieved a higher recall (86%) but at the cost of very low precision (33.7%) and
overall accuracy (67.4%).

e The Cochrane classifier's low precision resulted in a high volume of false positives, incorrectly identifying
a large number of non-RCTs as RCTs. °

Classifier Accuracy Recall Precision F1-score
Zero-Shot LLM 0.91 0.70 0.78 0.74
Cochrane 0.67 0.86 0.34 0.49

Table 1: Results for the breast cancer data set, 2380 abstracts

- Discussion

e The study confirmed that a general-purpose LLM classifier guided by a well-designed prompt can be a
more balanced and robust solution for RCT identification than a specialised tool. *1"12

e The Cochrane classifier's optimisation for high recall leads to a significant number of false positives,
which can increase the workload for human reviewers in a double-screening scenario.

e The LLM classifier's superior F1-score highlights its ability to provide a more reliable and better
balance between recall and precision for identifying likely RCTs, enabling review teams to manage
datasets more efficiently.

e The LLM classifier's strong performance was achieved with a zero-shot approach, requiring only a
dedicated prompt. This demonstrates that review teams can develop their own classifiers without
relying on the Cochrane classifier, while still avoiding the need for model retraining.
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A zero-shot, prompt-engineered large language model (LLM) identifies randomised controlled trials (RCTs) from titles and abstracts with greater overall

b Methods

e A dataset of 2380 titles and abstracts, TIABs, manually screened for a breast cancer systematic
literature review, was used for this study.

e A specialised prompt was developed to instruct a GPT-4.7 model to classify records as either a likely
RCT or not likely an RCT in a zero-shot workflow.

e The pipeline initialises an LLM model (GPT-4.1) with adjustable parameters such as temperature (which
influences the balance between predictability and creativity in generated text) to manage model
behaviour. ™

e The temperature parameter was set to 0.1 to standardise model behaviour.

e The same dataset was also processed using the established Cochrane classifier for a direct
comparison.

e Key performance metrics—accuracy, precision, recall, and F1-score—were calculated to provide a
comprehensive assessment of each tool's classification capabilities.

e The performance of both classifiers was evaluated against a human-labeled ground truth.
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Figure 1: Confusion Matrix for Zero-Shot LLM Classification Figure 2: Confusion matrix for Cochrane Classification

e Reproducibility concerns were mitigated by lowering the temperature parameter, which reduced the
randomness in the LLM’s outputs. '

e |[ncorporating the LLM classifier into a literature review management system allows ease of data
connectivity and minimal disruption to the screening workflow

e We propose that classifying titles and abstracts as likely-RCT or not-RCT, could be utilised to support
screening, for example, not-RCTs could be quickly excluded with an acceptable low risk of missing
eligible RCTs in suitable reviews (i.e. reviews where non RCT study designs are not eligible).

e A limitation of this study is that it was conducted using one dataset, further research on additional
datasets could assess if these findings are consistent for other reviews.

(g~ Conclusion

e A prompt-engineered GPT-4.1 provides a more balanced and effective solution for RCT identification than the Cochrane classifier.

e The LLM classifier’s substantially higher F1-score demonstrates its ability to effectively distinguish RCTs while minimising the false positives that can burden review teams.

e The LLM classitier's superior overall performance, achieved with a dedicated prompt without model training, makes it a more practical and efficient tool for resource-constrained systematic

review workflows.
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