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Introduction
• Access to real-world health claims data is often restricted by stringent privacy regulations, which

limits research and innovation potential in healthcare analytics [1,2].
• Synthetic data provides a promising solution by replicating the statistical properties of original

datasets while protecting insurants privacy [1,2].
• Previous work has established a holistic evaluation framework to assess privacy, fidelity, scalability,

and utility of synthetic datasets in health research contexts [3].
• Longitudinal relational claims data present additional challenges for synthesis due to multi-table

structures, temporal dependencies, and diverse clinical coding systems.
• Systemic lupus erythematosus (SLE) is a rare, clinically heterogeneous, and resource-intensive

condition, making it a suitable case study for evaluating synthetic data generation methods.

Objectives
• Apply and compare multiple synthetic data generation methods on a German longitudinal health

claims dataset consisting of insurants with SLE diagnoses.
• Assess performance across the dimensions of privacy, scalability & robustness, fidelity, and

utility dimensions using the previously developed evaluation framework [3].
• Investigate the feasibility of using synthetic data for both basic analytical script development and

complex real-world evidence (RWE) studies, including disease prevalence, treatment pathways,
and healthcare utilization analyses.

• Provide guidance on method selection and dataset tailoring to balance privacy protection with
analytical fidelity in German health claims research.

Methods
Data source: WIG2 benchmark database (DS-WIG2) - longitudinal German health claims.
Cohort: 6,743 insurants with SLE diagnosis between 2014 - 2021 spanning 11 different tables.
Synthetic data generation methods: Generative Adversarial Networks (DS-GAN), Adversarial
Random Forests (DS-ARF), and two Bayesian Network (DS-BNN-Kaur, DS-BNN-WangTucker).
Hardware: Off-the-shelf computing resources.
Evaluation metrics:

• Privacy: Absence of duplicates between original and synthetic insurants and resistance to re-
identification attacks using Normalized Compression Distances (NCDs).

• Scalability & Robustness: Ability to generate complete datasets utilizing off-the-shelf hardware
with minimal input data simplifications. No SLE-specific information should be incorporated manually
into the synthetic data model and output data.

• Fidelity & Utility: Uni-, bi- and multivariate statistical alignment by, e.g., standardized mean differ-
ences (SMDs), discriminator model performance (ROC AUC), and temporal consistency (weighted
R² of feature onset and discontinuation probabilities). Overall, suitability for basic analysis scripting
and Real-World-Evidence (RWE) synthesis.
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Figure 1: Median, IQR and range of NCD distances between original data insurants

High median total NCD (≥7.84, see Figure 1) were observed across all datasets compared to
self-comparison (1.22), indicating low similarity between original and synthetic insurants. The total
distances to the closest original insurant did not fall below 7.35 (5.52 in DS-WIG2), except for DS-
ARF (3.85).

Privacy attack robustness testing showed minimal leakage risk for DS-BNN-WangTucker (98.9% of
insurants without NCD <0.25 across ≥2 tables) and low rates for DS-BNN-Kaur (23.8%) and DS-GAN
(22.4%). DS-ARF showed low distances across sensitive tables for 1.65% of DS-WIG2 insurants, but
manual review confirmed no sensitive data overlap.

Scalability & Robustness
Model Scaling Training data reduction Limited by Training time
DS-ARF Logarithmic None - 7 d
DS-BNN-Kaur Exponential Severe (12.8%)¹ RAM 8 h
DS-BNN-WT Logarithmic None RAM 20 h
DS-GAN Cubic Minimal (81.3%)¹ GPU 54 h

Table 1: Scalability of synthetic data generation methods

¹ Percentage of insurants used for training.

DS-ARF successfully processed the full dataset but had the longest runtime. DS-BNN-Kaur exhibited
severe scalability limitations due to RAM constraints. DS-BNN-WangTucker also processed the full
dataset but was slowed by single-threaded execution. DS-GAN leveraged GPU acceleration and
trained on slightly less than the full dataset due to the validation split, but exhibited cubic scaling
complexity (see Table 1).

Fidelity & Utility
Insurant counts were well reproduced, but large discrepancies in row and unique case counts
occurred, particularly in DS-GAN and DS-BNN-Kaur (2 - 798% of original), whereas DS-ARF most
closely matched the training data in volume and composition. DS-BNN-WangTucker suffered major
identifier linkage issues, hindering several cross-tabular evaluations. DS-ARF matched missing value
rates and avoided missing or hallucinated codes, unlike DS-GAN and DS-BNN-Kaur.
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Figure 2: Absolute SMDs of synthetic dataset features compared to original data

Numerical features were generally well replicated (absolute SMDs ≤0.20); however outpatient case
years showed high SMD values across three synthetic datasets, as shown in Figure 2. Underperfor-
mance in TOP-15 categorical feature replication based on original data frequencies can be seen
across all datasets in various features.

Date features were well replicated in DS-BNN-ARF. Nevertheless, continuous insurance period date
generation was poorly aligned across all datasets (SMD ≥ 1.38). Claims in within insured periods
were comparable to DS-WIG2 in DS-BNN-Kaur, and DS-GAN, but less so in DS-BNN-WangTucker
(17 - 55%) and DS-ARF (59 - 70%). Feature onset and discontinuation rates were poorly replicated.
(weighted R² 0.16 - 0.43)

Overall, nearly perfect discriminator model performance (ROC AUC ≥0.99), inability to replicate
weaker associations and temporal dependencies hint that while medium univariate fidelity was
achieved, multivariate and time-dependent fidelity remains a challenge.

Subsequent RWE generation showed serious flaws in generating insurant populations with confirmed
SLE diagnosis and sufficient follow-up times. Baseline characteristics, prevalence and incidence
estimates and other RWE analysis results differed substantially from the original data.

Conclusions
• Synthetic data methods enable mid-fidelity data generation with strong privacy preser-

vation, even with limited resources.
• They can support hypothesis generation and analytic script development where access to

real data is restricted; however, correlations between variables on synthetic data should be
examined carefully and all findings should be validated on real data.

• Approaches vary in fidelity, scalability, and privacy, so methods must be matched to the use
case and data type.

• A pragmatic data generation strategy involves aligning methods with application, making evalu-
ation results available, applying pre- and post-processing to enhance quality and usability, and
iteratively refining models and expectations.

• Future work should improve multivariate and temporal fidelity and extend methods for complex
relational data.
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