

Saving Money, Improving Outcomes: A Two-year Cost-utility Analysis of Emergency Department Care Models for Managing Persons Presenting with a Musculoskeletal Disorder

Rose Gagnon^{1,2,3}, Naomi Hope Chouinard^{1,2}, Kadija Perreault^{1,3}, Simon LaRue², Simon Berthelot^{1,2},
Juliette Marchand¹, Komi Edem Gatovo², Luc J. Hébert^{1,3}, Jason R. Guertin^{1,2}

Contact: rose.gagnon.1@ulaval.ca

Affiliations

1. UNIVERSITÉ Laval
2. CENTRE DE RECHERCHE CHU de Québec
Université Laval
3. Cirris

EE655

Context

Musculoskeletal disorders are highly prevalent¹

- Major cause of work and productivity losses²
- Estimated to represent between 5.4% and 12.6% of a country's direct healthcare costs³

Second most important reason for consulting a physician, but timely access remains challenging^{2,4}

- Limits continuity of care⁵
- Contributes to emergency department (ED) overcrowding⁶

Up to 25% of all ED visits are for musculoskeletal disorders⁷

One solution is to further integrate a variety of health professionals in the ED

Such as physiotherapists⁸

...However, the long-term efficiency of ED physiotherapy management has never been evaluated⁹

Is this new care model efficient when compared to usual care?

Objective

Evaluate the two-year efficiency of two ED care models: 1) management by an emergency physician alone, and 2) management by an emergency physician and a physiotherapist.

Methods

- ⇒ Cost-utility analysis (two-year period) using a hybrid mathematical model (decision tree + Markov model)
- ⇒ Two perspectives: Canadian Public Payer and Canadian Society
- ⇒ Decision tree (0-3 months)
 - Based on data collected during a randomized clinical trial (RCT) (n=78, aged 18-80, #NCT04009369)
 - Health-related quality of life was measured using the EQ-5D-5L. Scores were transformed into:
 - Utility scores - Canadian conversion algorithm (Xie et al., 2016)
 - Quality-adjusted life years (QALY) - Area-under-the-curve analyses
 - Costs measured using a standardized healthcare resource utilization questionnaire
- ⇒ Markov model (4-24 months)
 - Modeled using data from the literature (scientific + grey)
- ⇒ Probabilistic approach was used to ensure the results' robustness (Monte Carlo simulation, n = 10,000 iterations)
- ⇒ All costs are in CAD 2024 values

Scan here for an illustrated version of the hybrid mathematical model

Results

Table 1. Baseline characteristics of the RCT participants (n=78)

Characteristics	Usual care		New care model		Characteristics were very similar between groups ... although participants in the new care model were more likely to be female and younger All analyses were therefore adjusted for age and sex
	EP alone	PT + EP	EP alone	PT + EP	
Number of participants, n (%)	38 (48.7)	40 (51.3)			
Age (yr), mean (SD)	44.1 (17.3)	36.6 (17.3)			
Sex, n females (%)	12 (31.6)	22 (55.0)			
Other health condition, yes (%)	23 (60.5)	26 (65.0)			
Localisation of MSKD, n (%)					
Upper/lower limb	19 (50.0)	23 (57.5)			
Spine	19 (50.0)	17 (42.5)			
Family physician, yes (%)	30 (78.9)	33 (82.5)			
Pain level, 0-10 (SD)	6.7 (2.2)	6.9 (2.0)			
Pain interference, 0-10 (SD)	4.4 (1.8)	4.1 (2.3)			
Pain catastrophizing, 0-100 (SD)	22.4 (11.8)	18.3 (13.2)			

Table 2. Average total cost and QALY gain per person, per intervention and per perspective

Cost category	Mean cost ^a (95% CI)				
	Public Payer		Societal		
	Usual care EP alone	Intervention EP + PT	Usual care EP alone	Intervention EP + PT	
Average total cost (CAD 2024)					
Two-year	6,840 (5,097; 10,208)	6,150 (4,775; 8,541)	47,222 (27,638; 98,590)	30,978 (22,193; 49,086)	
Average total QALY gain					
Two-year	1.4657 (1.0041; 1.7790)	1.5676 (1.0920; 1.8460)	1.4657 (1.0041; 1.7790)	1.5676 (1.0920; 1.8460)	
Two-year ICER	- 6,770 CAD / QALY [Dominant]		- 159,418 CAD / QALY [Dominant]		

EP + PT care model was found to be dominant for both perspectives

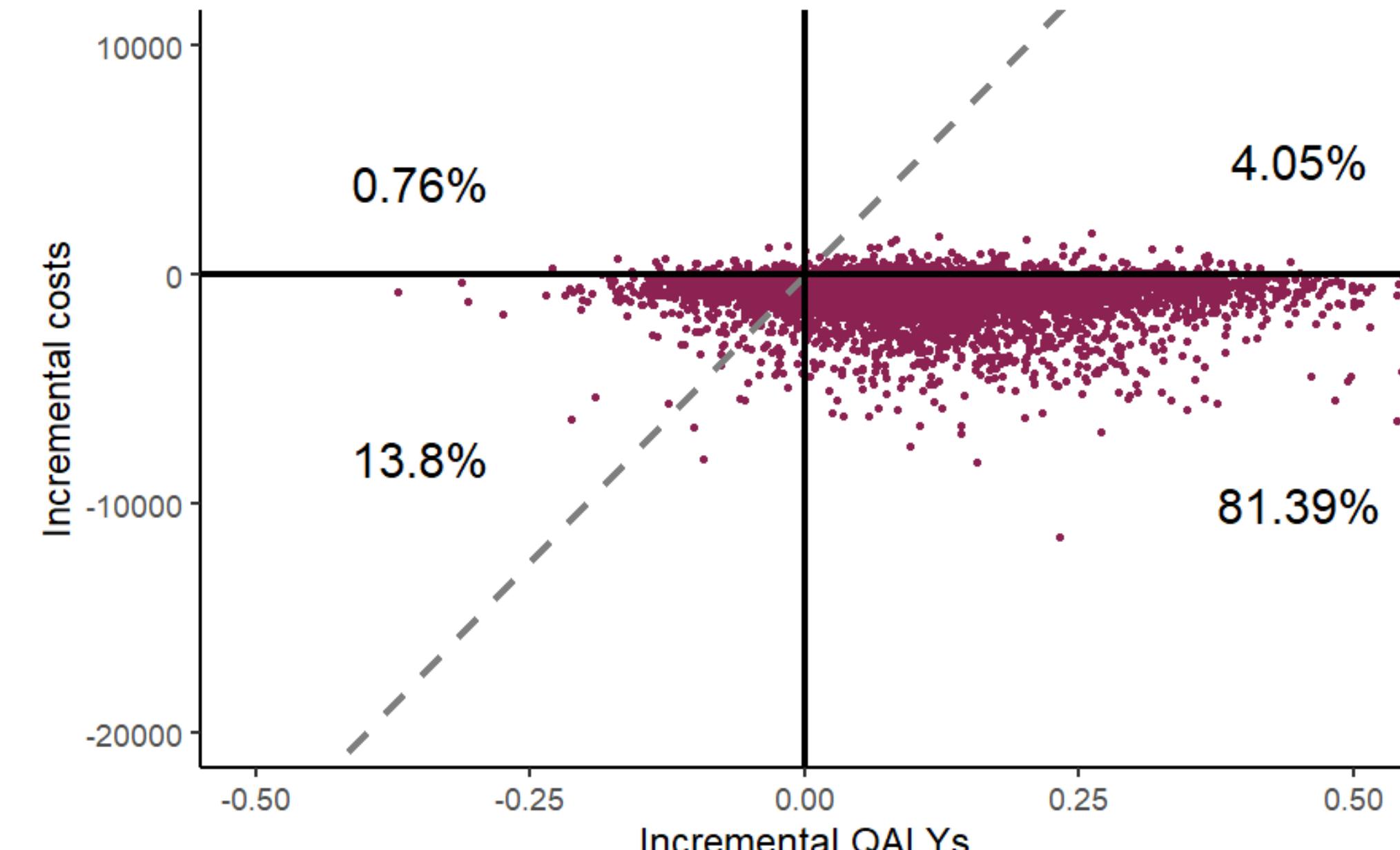


Figure 1. Cost-effectiveness plane – Canadian Public Payer perspective

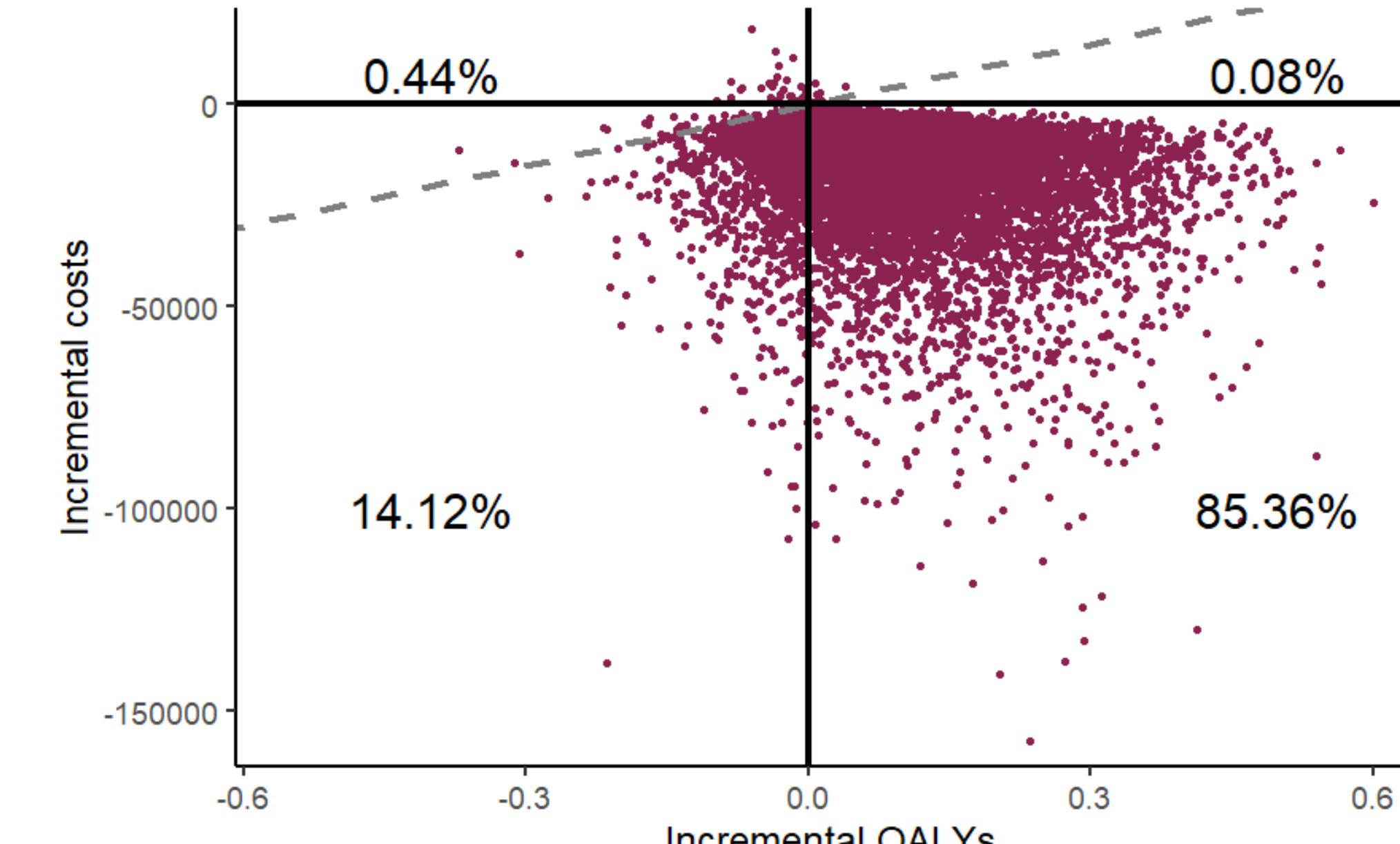


Figure 2. Cost-effectiveness plane – Canadian Society perspective

For both perspectives, the EP + PT care model was identified as being either cost-effective or dominant in over 80% of iterations

Discussion + Conclusion

The addition of physiotherapists in the ED may have the potential to reduce expenses while improving health-related quality of life over two years

Results support the importance of further studying the impact of alternative ED care models

A more systematic measurement of care models' efficiency could promote equity (value-based healthcare)

Limits: High variability in some cost and effectiveness measures, scarcity of longitudinal data on the costs and clinical outcomes associated with musculoskeletal disorders

References

1. Cieza, Causey, Kamenov et al. *The Lancet*. 2021. [10.1016/S0140-6736\(20\)32340-0](https://doi.org/10.1016/S0140-6736(20)32340-0)
2. Woolf and Pfleger. *Bulletin of the World Health Organization*. 2003.
3. March, Smith, Hoy et al. *Best Pract Res Clin Rheumatol*. 2014. [10.1186/s12856-018-0967-y](https://doi.org/10.1186/s12856-018-0967-y)
4. Schneider, Shah, Doty et al. *The Commonwealth Fund*. 2021.
5. Kiran, Daneshvarfard, Wang et al. *CMAJ*. 2024. [10.1136/1398-008-0277-5](https://doi.org/10.1136/1398-008-0277-5)
6. Andrews and Kass. *Intern Emerg Med*. 2016. [10.1007/s11739-018-1792-3](https://doi.org/10.1007/s11739-018-1792-3)
7. Bird, Thompson, Williams. *J Physiotherapy*. 2016. [10.1016/j.jphys.2016.08.005](https://doi.org/10.1016/j.jphys.2016.08.005)
8. Canada's Drug Agency Health Technology Review. *Emergency Department Overcrowding: Contributing Factors and Interventions*. 2023.
9. Gagnon, Chouinard, Perreault et al. *medRxiv*. 2025. [10.1101/2025.09.05.2535189](https://doi.org/10.1101/2025.09.05.2535189)

Funding

Rose Gagnon received financial support from:

Cirris