

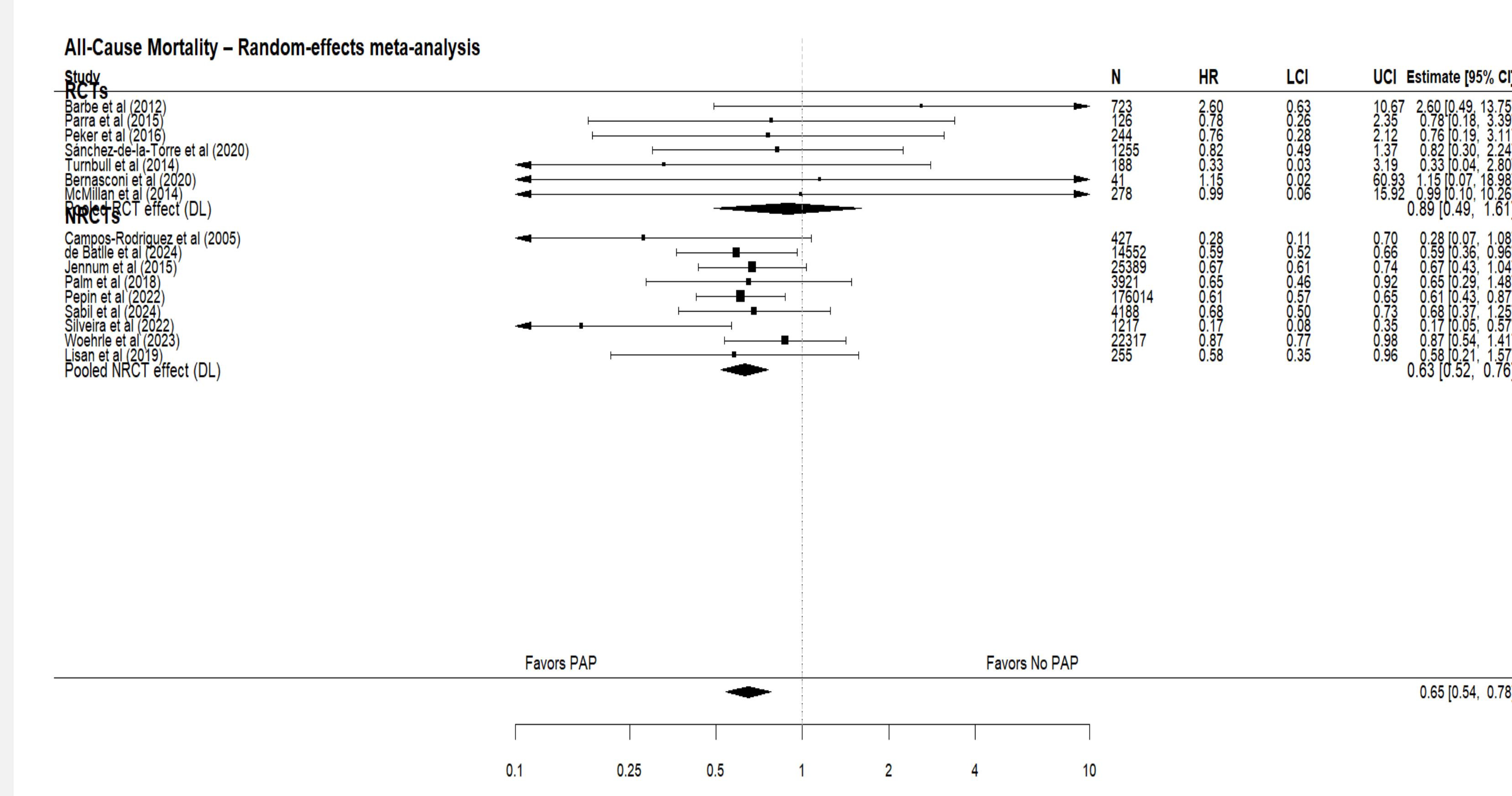
Effect of Positive Airway Pressure Therapy on Mortality in European Obstructive Sleep Apnea Patients: Post Hoc Analysis of a Global Meta-Analysis

Ankit Ghildiyal, M.Pharm, MSc¹, Melike Deger Wehr, BSc, MSc², Fatima Sert Kuniyoshi, PhD³, Florent Lavergne, MSc⁴, Alison Wimms, PhD⁵.
¹ResMed, Oxfordshire, United Kingdom, ²ResMed, München, Germany, ³ResMed, San Diego, CA, USA, ⁴ResMed, Lyon, France, ⁵ResMed, Sydney, Australia.

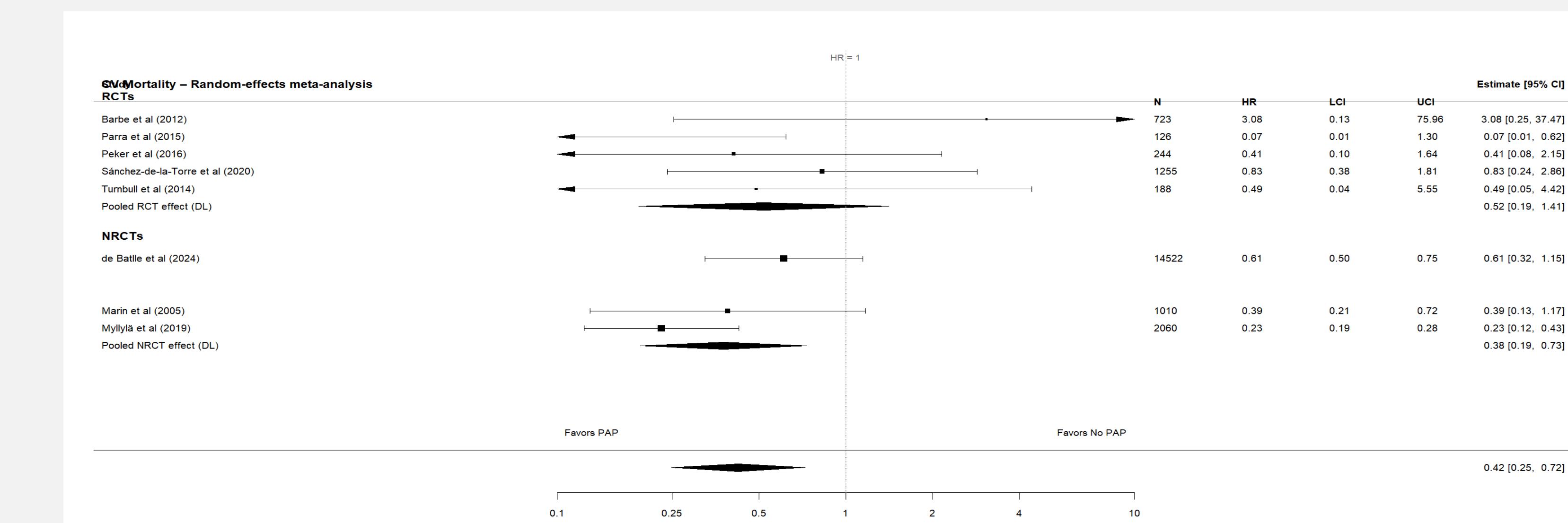
INTRODUCTION

- Obstructive Sleep Apnea (OSA)** is a prevalent sleep-related breathing disorder linked to increased **all-cause** and **cardiovascular (CV) mortality**. Positive Airway Pressure (PAP) therapy is the first-line treatment shown to improve sleep quality, reduce hypoxic burden, and stabilize cardiovascular function.
- While **observational studies** consistently show mortality benefits with PAP therapy, findings from **randomized controlled trials (RCTs)** have been mixed, creating uncertainty about its long-term survival impact. These discrepancies may be influenced by **study design, patient selection, adherence variability, and regional healthcare factors**.
- To better understand the impact of PAP in a more homogeneous setting, we conducted a **European-focused post hoc analysis** using data extracted from a recent global meta-analysis (Benjafield et al., *Lancet Respir Med*, 2025), evaluating PAP's effect on mortality outcomes specifically in European adults with OSA.

METHODS


This post hoc subgroup analysis focused on **European studies** included in a recent global meta-analysis (Benjafield et al., *Lancet Respir Med*, 2025), assessing the impact of **positive airway pressure (PAP)** therapy on mortality outcomes in patients with **obstructive sleep apnea (OSA)**.

- Data Source:** Published **hazard ratios (HRs)** and **95% confidence intervals (CIs)** were extracted directly from the original forest plots.
- Sample Size:** Combined total of **254,205 patients**, across **randomised controlled trials (RCTs)** and **non-randomised controlled trials (NRCTs)**. NRCTs in the original meta-analysis were adjusted for key confounders
- Data Computation:** **Log(HR)** and **standard errors (SEs)** were calculated from the reported CIs, assuming a **log-normal distribution**
- Models Used:**
 - DerSimonian-Laird (DL): Standard random-effects model.
 - Hartung-Knapp-Sidik-Jonkman (HKSJ): Conservative sensitivity model, adjusts for small sample sizes.
- Stratification:** Randomized controlled trials (RCTs), non-randomised controlled trials (NRCTs) and overall pooled.
- Software:** R (metafor).


RESULTS

- Eighteen studies ($n = 254,205$) met inclusion criteria: 7 RCTs ($n = 2,855$) and 11 NRCTs ($n = 251,350$).
- For all-cause mortality** (RCT=7; NRCTs=9), the DL model showed a significant overall benefit of PAP ($HR = 0.65$; 95% CI: 0.54–0.78), with stronger effects in NRCTs ($HR = 0.63$; 95% CI: 0.52–0.76), while effects in RCTs were not significant ($HR = 0.89$; 95% CI: 0.49–1.61). HKSJ results were similar ($HR = 0.65$; 95% CI: 0.55–0.77), with consistent patterns across study types.
- For CV mortality** (RCT=5; NRCTs=3), PAP therapy was linked to a significant overall reduction in risk in the DL model ($HR = 0.42$; 95% CI: 0.25–0.72), with strong effects in NRCTs ($HR = 0.38$; 95% CI: 0.19–0.73) and non-significant results in RCTs ($HR = 0.52$; 95% CI: 0.19–1.41). HKSJ estimates confirmed the findings with wider uncertainty (overall $HR = 0.42$; 95% CI: 0.22–0.81).

All cause mortality							
Study	Study Type	Sample Size	HR	Lower CI	Upper CI	logHR	SE
Barbe et al (2012)	RCT	723	2.6	0.63	10.67	0.96	0.72
Parra et al (2015)	RCT	126	0.78	0.26	2.35	-0.25	0.56
Peker et al (2016)	RCT	244	0.76	0.28	2.12	-0.27	0.52
Sánchez-de-la-Torre et al (2020)	RCT	1255	0.82	0.49	1.37	-0.20	0.26
Turnbull et al (2014)	RCT	188	0.33	0.03	3.19	-1.11	1.19
Bernasconi et al (2020)	RCT	41	1.15	0.02	60.93	0.14	2.05
McMillan et al (2014)	RCT	278	0.99	0.06	15.92	-0.01	1.42
Campos-Rodríguez et al (2005)	NRCT	427	0.28	0.11	0.7	-1.27	0.47
de Batlle et al (2024)	NRCT	14552	0.59	0.52	0.66	-0.53	0.06
Jennum et al (2015)	NRCT	25389	0.67	0.61	0.74	-0.40	0.05
Palm et al (2018)	NRCT	3921	0.65	0.46	0.92	-0.43	0.18
Pépin et al (2022)	NRCT	176014	0.61	0.57	0.65	-0.49	0.03
Sabil et al (2024)	NRCT	4188	0.68	0.5	0.73	-0.39	0.10
Silveira et al (2022)	NRCT	1217	0.17	0.08	0.35	-1.77	0.38
Woehrle et al (2023)	NRCT	22317	0.87	0.77	0.98	-0.14	0.06
Lisan et al (2019)	NRCT	255	0.58	0.35	0.96	-0.54	0.26

CV mortality							
Study	Study Type	Sample Size	HR	Lower CI	Upper CI	logHR	SE
Barbe et al (2012)	RCT	723	3.08	0.13	75.96	1.12493	1.62511
Parra et al (2015)	RCT	126	0.07	0	1.3	-2.6593	inf
Peker et al (2016)	RCT	244	0.41	0.1	1.64	-0.8916	0.71359
Sánchez-de-la-Torre et al (2020)	RCT	1255	0.83	0.38	1.81	-0.1863	0.39819
Turnbull et al (2014)	RCT	188	0.49	0.04	5.55	-0.7133	1.25834
de Batlle et al (2024)	NRCT	14522	0.61	0.5	0.75	-0.4943	0.10343
Marin et al (2005)	NRCT	1010	0.39	0.21	0.72	-0.9416	0.31432
Myllylä et al (2019)	NRCT	2060	0.23	0.19	0.28	-1.4697	0.09892

CONCLUSION

PAP therapy significantly reduces all-cause and cardiovascular mortality among European adults with OSA. The effect is most pronounced in adjusted non-randomised studies, underscoring its real-world survival benefits. These findings reinforce PAP as a life-saving intervention and highlight the urgent need for broader access and adherence support across Europe.