

Unlocking the Value of RSV Adult Vaccination with Adjuvanted RSVPreF3 Vaccine in Germany: a Return on Investment Analysis Using an Integrated Actuarial-Macroeconomic Model

Eleftherios Zarkadoulas¹, Alen Marijam¹, Maria Waize², Alexandra Kostakis³, Attila Mihalyi¹,

Nikos Kotsopoulos⁴

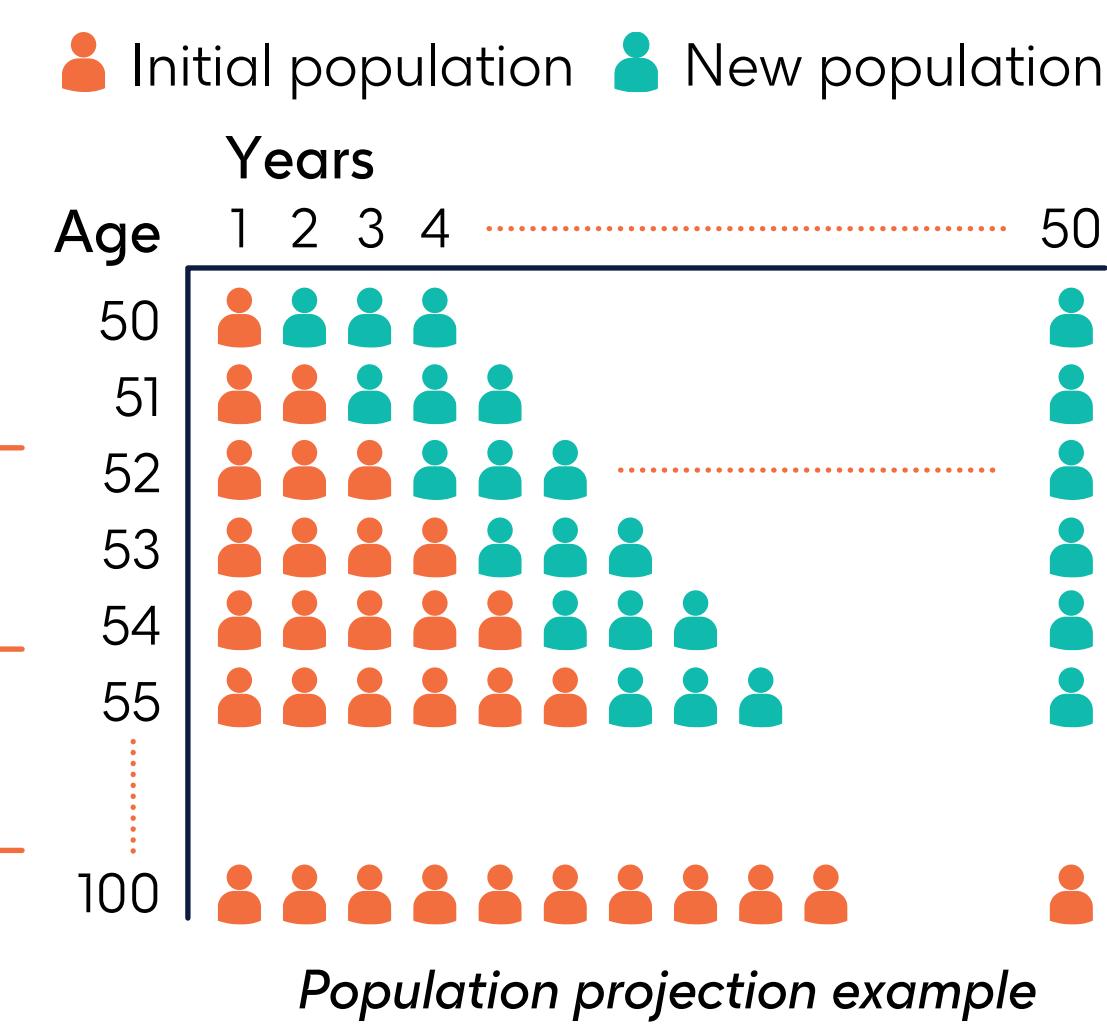
¹GSK, Wavre, Belgium; ²GSK, Munich, Germany; ³GSK, London, UK; ⁴University of Groningen, Groningen, The Netherlands

Respiratory syncytial virus vaccination in Germany is a **cost-saving public health intervention**: for every €1 spent on vaccinating people aged 60 and older, society gains at least €2.70 through **health and broader economic benefits**.

Background

- Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTD) in older adults, especially those with underlying health conditions.^{1,2}
- Besides imposing a substantial burden on the German healthcare system, RSV contributes to a diminished quality of life for patients, and to productivity losses for the entire economy.³
- Vaccination programs present an effective strategy to alleviate RSV burden. Thus, economic evaluation is essential to adequately inform policies and their implementation.

An actuarial model was adapted to the German context, with projection of RSV impact on productivity. We aimed to measure, through modelling, the return on investment (ROI) of adjuvanted RSVPreF3 vaccination in Germany, considering: **Healthcare cost savings**; **Averted productive output loss** (gross domestic product [GDP] loss); **Averted monetized quality-adjusted life-year (QALY) loss**; **Deadweight loss**.


Demographics

Population:
One time vaccination of adults aged 50-59 at increased risk and adults aged ≥60 years for 5 years

Vaccination coverage:
75%⁴

Time horizon:
10 years (outcomes) & lifetime (QALYs)

Discount rate:
3% Costs and QALYs

Study design

Disease simulation model⁵ to assess health benefits and healthcare cost savings with vaccination

Actuarial framework to project age-specific disease incidence, healthcare resource use, and costs⁶

Productivity loss component (impact of RSV-attributed productivity loss on GDP)

GDP loss was estimated using the **Cobb-Douglas production function**,⁷ typically expressed as $Y=A\cdot K^\alpha \cdot L^\beta$

$$\text{GDP Loss: } YL(t) = \frac{\text{Work Hours Loss (t)} \times \beta \times Yh}{\text{Total Work Hours (t)}}$$

Y : total output (i.e., GDP); A : total factor productivity reflecting efficiency in the use of capital (K) and labour (L) which is measured in terms of total hours worked; α , β : output elasticities of capital and labour; Yh : GDP per workhour.

Deadweight loss

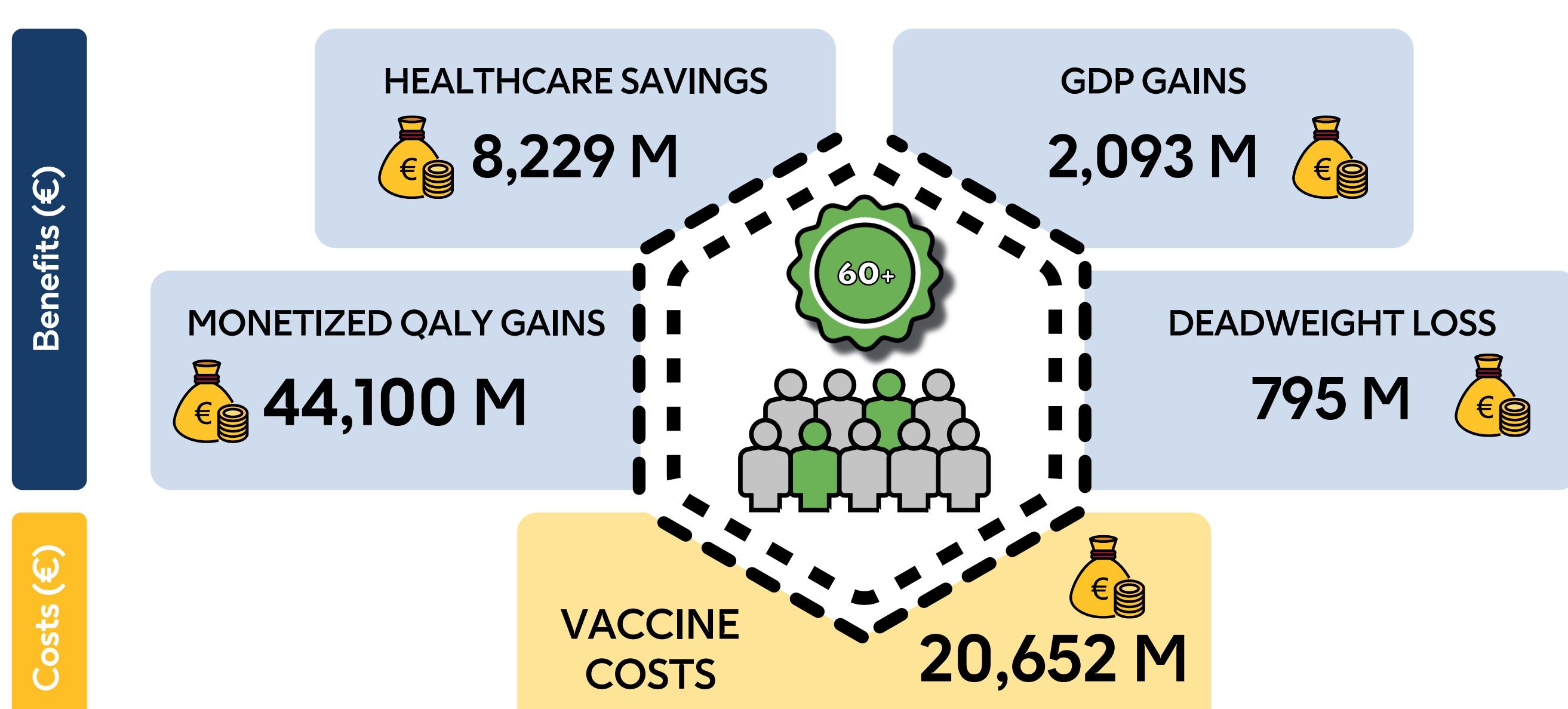
The **economic cost**, associated with raising **additional tax revenue** to compensate for the loss of government revenue caused by reduced productivity.

Vaccination benefits (monetised QALYs)

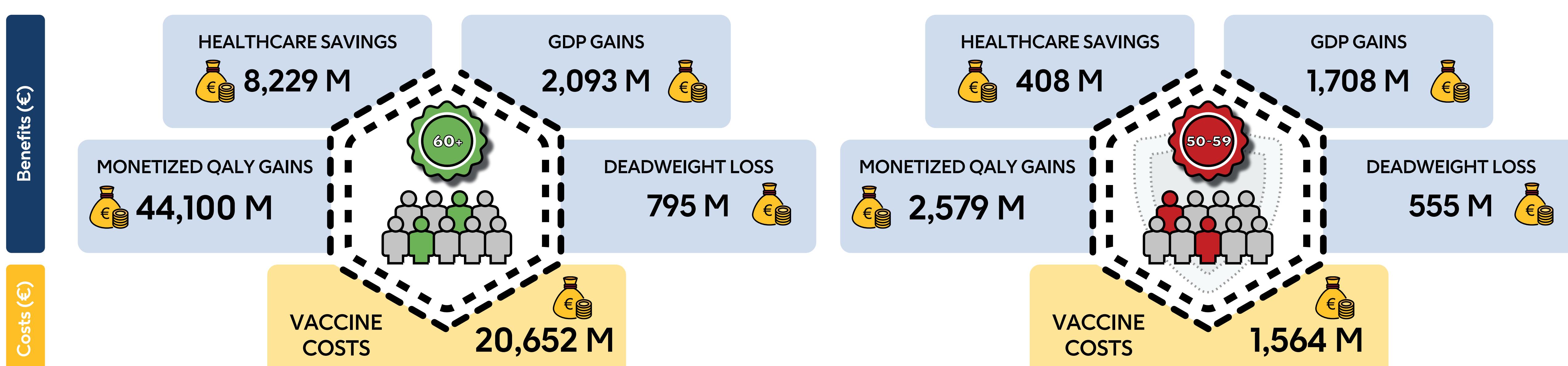
Valued at 1x GDP per capita (i.e., €43,400)⁸ per QALY gained

Cost-benefit analysis (CBA)

The CBA generated a **ROI**: to compare vaccination economic gains (averted losses) with the costs of vaccination


$$\text{ROI} = \frac{\Delta(\text{PV Broader Economic Loss}) + \Delta(\text{PV Health Related Loss}) + \Delta(\text{Monetised QALYs})}{\Delta(\text{Vaccine Costs})}$$

PV: Present value; Δ : Difference between vaccinated and unvaccinated cohorts.


Results

Key Messages

GENERAL POPULATION 60+

AT INCREASED RISK[†] POPULATION 50-59

In both populations vaccination delivers substantial societal and economic value through monetized QALYs, healthcare savings, GDP gains, and reduced deadweight loss.

The vaccine program's costs are outweighed by substantial financial and healthcare benefits.

Every €1 invested in RSV vaccination delivers between €2.70 and €8.80 in value to society.

Investing in RSV vaccination offers attractive returns, delivering an IRR of 28%–47% and full capital recovery in 3.5–4.7 years.

Conclusions

A vaccination program with the **adjuvanted RSVPreF3 vaccine for adults aged 50-59 years at increased risk and adults aged ≥60 years** in Germany would constitute a **high-value public health investment**, yielding positive returns.

The results support informed decisions on public investment in RSV immunization as a **cost-saving strategy that delivers both substantial health benefits and broader economic gains**.

*Data updated post-abstract submission. [†]Assuming a higher risk of hospitalization due to a baseline condition. ⁵The value of a statistical life year (VSLY) measures how much society is willing to pay to gain one extra year of life expectancy for an individual. The VSLY used here is based on German reference values.⁹

Abbreviations

References

- Zhang T et al. BMC Med. 2025;23(1):453. **2.** Kenmoe S et al. Curr Opin Infect Dis. 2024;37(2):129–136. **3.** Scholz S et al. Infect Dis Ther. 2024;13(8):1759–1770. **4.** Zarkadoulas L et al. Eur J Public Health. 2024;34(Suppl 3):ckeal144933. **5.** La E et al. Hum Vaccin Immunother. 2024;20(1):2432745. **6.** Plamondon P et al. 2002. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1274526/>. **7.** Torzilli A and Mela A. Expert Reves Pharmaco-econ Outcomes Res. 2018;18(1):93–105. **8.** European Union. Council Directive 2025/2025/EC. Available from: https://ec.europa.eu/principles-countries-history/eu-countries/germany_en. **9.** Schlauder M et al. ISPOR Europe 2023 Poster HPR13. 2023. Available from: https://www.ispor.org/docs/default-source/euro2023/ispor-europe23schaeflerhpr13/poster131726-pdf.pdf?sfvrsn=e63d63f1_0.

Acknowledgements

The authors would like to thank Katherine Theiss-Nyland for reviewing, Envalife Medical Communication Service Center for editorial assistance; and Amandine Radziejewski for medical writing support, on behalf of GSK.

Disclosures

Funding: GSK (GSK study identifier: VEO-001367). **Market Access of interest:** NK is an employee of Global Market Access Solutions, which provides consulting services to pharmaceutical companies including GSK. EZ, AK, MW, AM and AMa are employed by GSK. EZ, AK, MW, AM and AMa hold financial equities in GSK.