

Cost-effectiveness Analysis of Pharmacogenetic Testing to Guide Treatment for Children with Asthma

Mingxuan Wu¹, Tom Ruffles², Somnath Mukhopadhyay², Amy Haeffner³, Katherine Payne¹, Richard McManus², William Newman⁴, Sean P. Gavan¹

¹Manchester Centre for Health Economics, The University of Manchester, UK, ²Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, UK, ³Royal Alexandra Children's Hospital, University Hospitals Sussex NHS Foundation Trust, UK, ⁴Division of Evolution, Infection and Genomics, The University of Manchester, UK

MANCHESTER CENTRE
FOR HEALTH ECONOMICS

NHS
England Network of Excellence

MANCHESTER
1824

brighton and sussex
medical school

The University of Manchester

Introduction

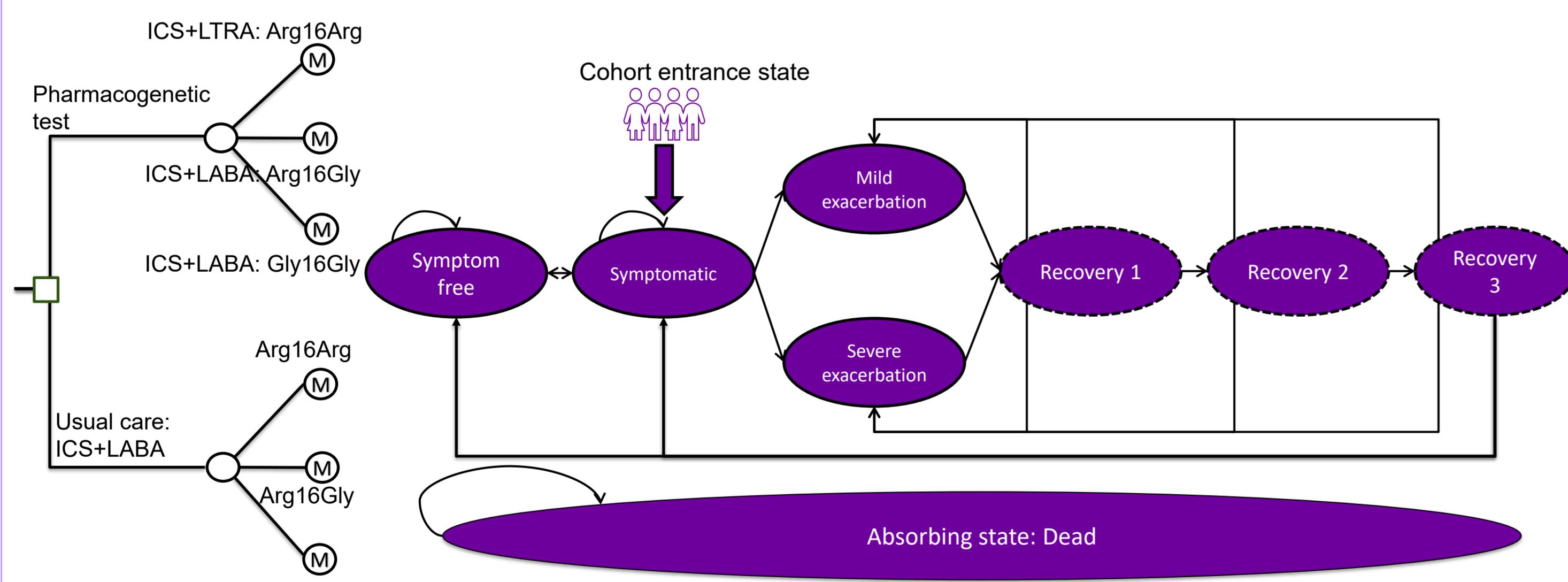
Children with copies of the **Arg16** allele for the ADRB2 gene encoding the β -2-adrenergic receptor have an **increased risk of asthma exacerbations** with long-acting β 2 agonist (LABA) use (OR = 1.52, 95%CI: 1.17, 1.99)¹.

This exacerbation risk could **decrease** if prescribed a leukotriene receptor antagonist (LTRA) instead.

Pharmacogenetic testing has the potential to mitigate this exacerbation risk by identifying the relevant children with two copies of the Arg 16 allele before prescribing².

A recent **meta-analysis** demonstrated that the addition of asthma controller treatment according to the Arg16Gly genotype reduced exacerbation rates (-0.08, 95%CI: -0.16, -0.00)³.

Objective


The study aims to evaluate whether genotype-guided treatment for asthma is clinically effective and is good value for money when compared with the usual approach to prescribing.

Methods

- A model-based economic evaluation simulated the cost-effectiveness of genotype testing for a hypothetical cohort of children with persistent asthma. The decision problem is summarized in the PICO table.

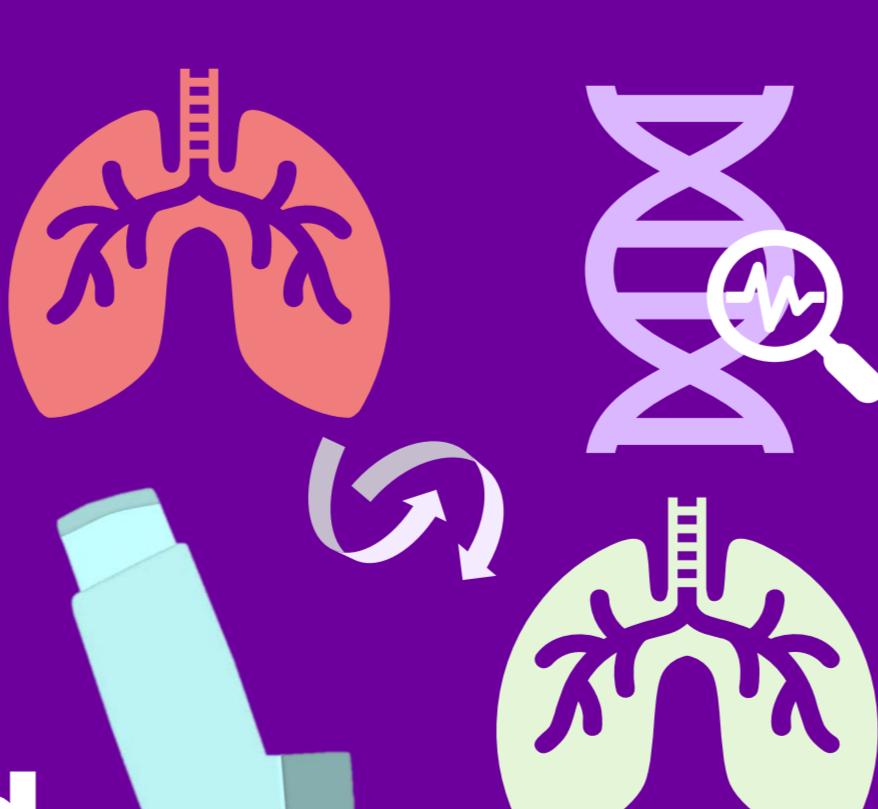

Population	Intervention	Comparator
Children aged 6-years, with persistent asthma uncontrolled at step 2 (inhaled corticosteroids monotherapy (ICS)) and requiring the initial add-on therapy at step 3	Following genotyping, Arg16Arg subgroup are prescribed with montelukast (LTRA) added to ICS, but Arg16Gly and Gly16Gly subgroup are prescribed with salmeterol (LABA) with ICS	Usual care, prescribing all children salmeterol (LABA) with ICS
Outcomes	Time horizon	Perspective
NHS costs (£, price year: 2024), Quality-adjusted life years (QALYs), Asthma exacerbation counts	Six years, from the start of age 6 to the end of age 11-years	Healthcare system, England
<ul style="list-style-type: none"> The Decision tree stratified the patients by ADRB2 genotypes. The Markov model showed mutually exclusive health states that a patient with asthma can experience. Probabilities of exacerbation given different treatments were estimated from a meta-analyses¹. 	<ul style="list-style-type: none"> Model parameters were sourced from published journals including clinical trial analyses² and meta-analyses^{1,3}. 	
<ul style="list-style-type: none"> Costs included costs of medication, consultation, hospitalization and pharmacogenetic testing. 	<ul style="list-style-type: none"> QALYs were calculated by multiplying the time in each health state by the according quality-of-life score. The quality-of-life scores were estimated by the EQ-5D-3L (UK valuation tariff)⁴. Analysis The outcomes were calculated on a per-patient basis and then scaled-up into the population level over 10 years. 	

Figure 1: Decision tree-Markov Model

Conclusion

Genotype-guided prescribing in children with moderate asthma was cost-effective, reducing exacerbations and saving healthcare costs.

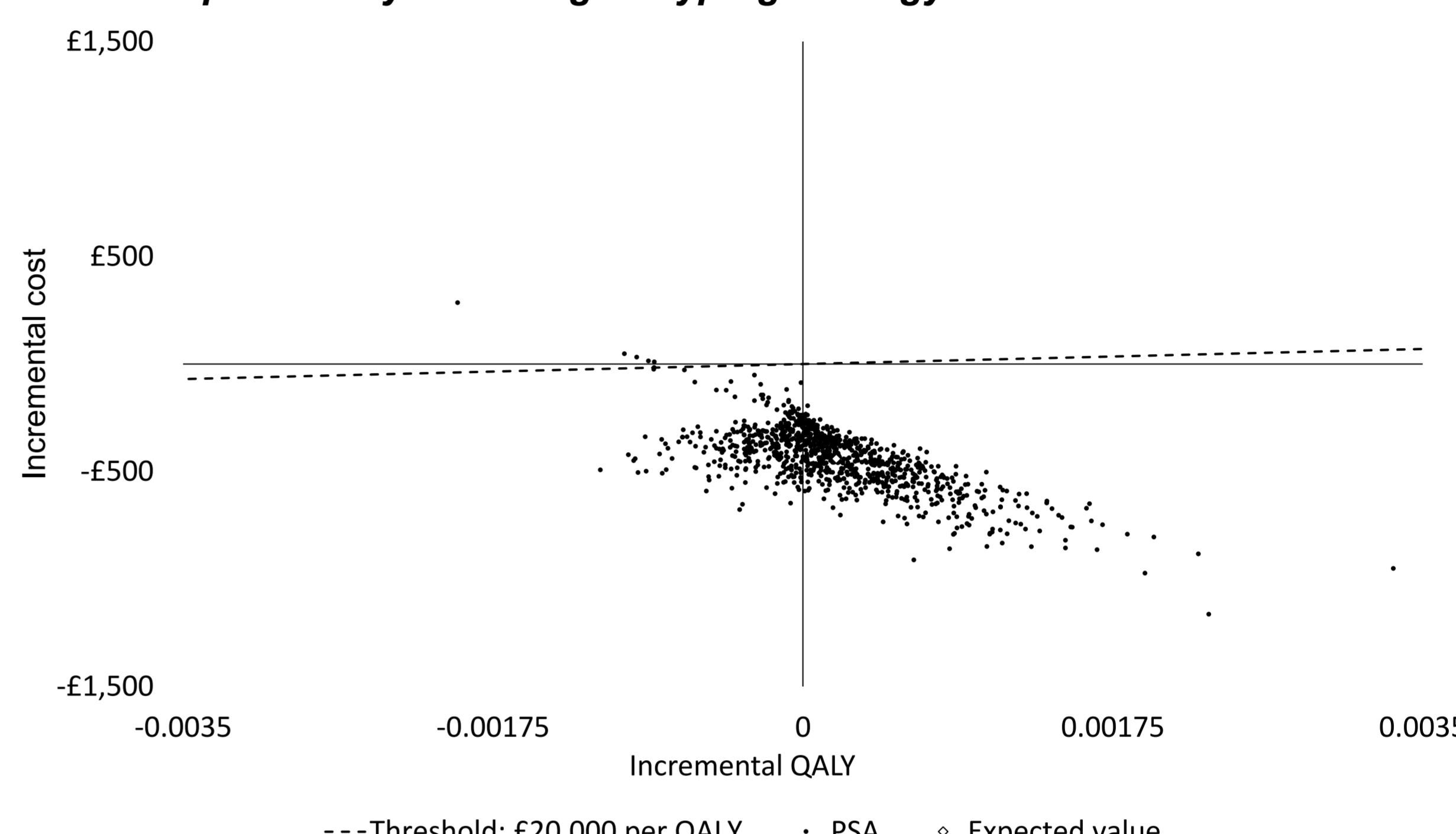

Results

Table 1 Genotype-guided treatment could save £470 and avoid nearly 1 exacerbation per child with asthma.

Strategies	Total cost	Total QALY	Number of exacerbations	Severe exacerbations	Diff in cost	Diff in QALY	Avoided exacerbations	Avoided severe exacerbations
Usual care	£5,070	4.83035	9.599	3.615				
Genotype-guided treatment	£4,601	4.83060	8.863	3.335	-£469	0.00025	-0.736	-0.280

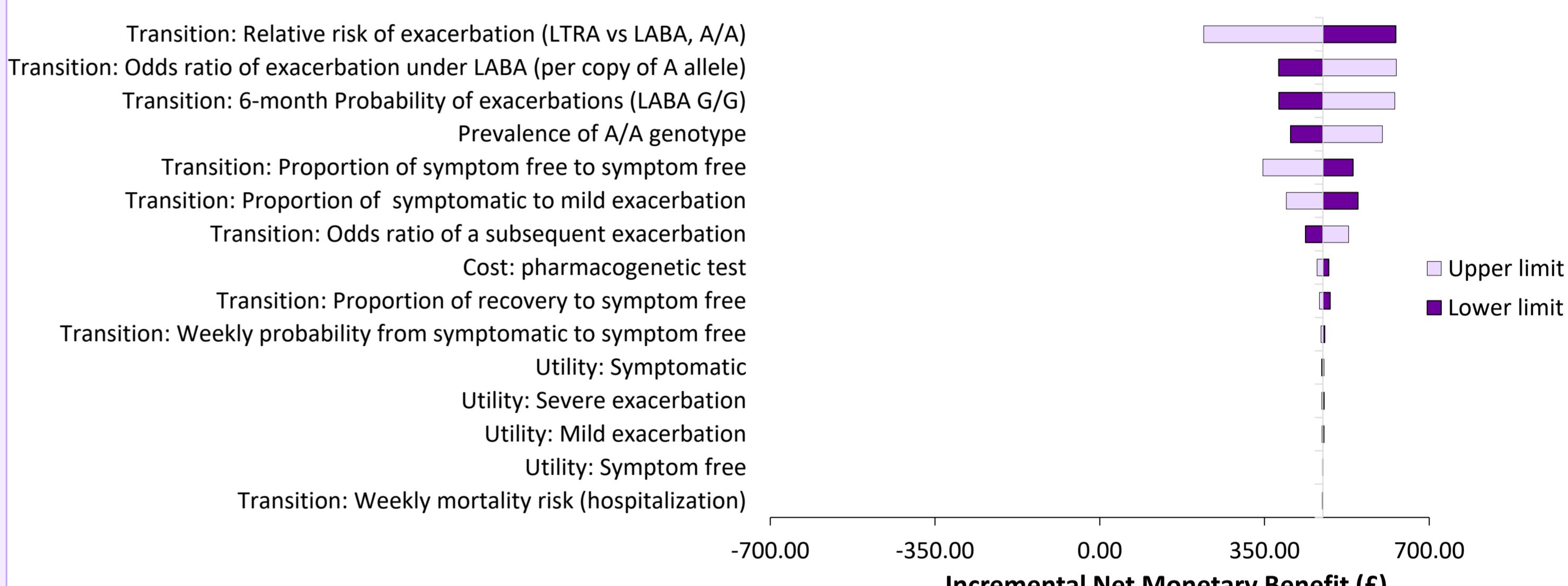

Diff: difference; QALYs: Quality-adjusted life years.

Figure 2: The probability that the genotyping strategy is cost effective* was 98.4%.

*Probability: the proportion of simulated incremental cost and incremental QALY pairs that fall below the cost-effectiveness threshold (dashed line).

Figure 3: The cost-effectiveness results were robust when varying every input parameter.

*Input parameters values were varied between their 95% confidence interval if reported, or $\pm 25\%$ variation otherwise. Incremental net monetary benefit is an estimate of cost-effectiveness, where INMB>0 means the genotype-guided treatment is cost-effective.

Scenario analyses on treatment effectiveness, strategy uptake, turnaround time and ethnic subgroup analysis were performed. The results were consistently in showing that genotype testing was cost-effective.

Table 2: Population clinical and economic benefits by rolling out the genotyping strategy.

Ten-year incident cohort size*	Incremental costs	Incremental QALYs	Avoided exacerbations	Avoided severe exacerbations
75702	-£35.5 million	18.59	-55729	-21187

Discussion

Decision makers can use this study to inform the economic value of ADRB2 pharmacogenetic testing to support the wider provision of genotype-guided treatment in the UK.

The economic evaluation can aid **health technology assessment bodies**, such as NICE, to inform the change of national guidelines.

Clinicians can leverage the promising evidence to support pharmacogenetic testing as a standard component of care for relevant children.

Our study can be used as a framework for decision-makers in **other countries** to help generate relevant economic evidence for their own healthcare settings.

Acknowledgement

This work was supported by the Manchester NIHR Biomedical Research Centre BRC (NIHR203308) and the NHS England Genomics Programme through the Pharmacogenetics and Medicines Optimisation Network of Excellence. The authors gratefully acknowledge Action Medical Research charity who funded PACT trial as the results directly contributed to the analysis.

References

- Turner S, Francis B, Vijverberg S, Pino-Yanes M, Maitland-van der Zee AH, Basu K, et al. Childhood asthma exacerbations and the Arg16 β -2 receptor polymorphism: A meta-analysis stratified by treatment. *J Allergy Clin Immunol*. 2016;138(1):107-13.e5.
- Ruffles T, Jones CJ, Palmer C, Turner S, Grigg J, Tavendale R, et al. Asthma prescribing according to Arg16Gly beta-2 genotype: A randomised trial in adolescents. *The European respiratory journal*. 2021;58(2):2004107.
- Slob EMA, Vijverberg SJH, Ruffles T, Noij LCE, Biermann J, Brouwer AFJ, et al. Genotype-Guided Asthma Treatment Reduces Exacerbations in Children: Meta-Analysis of Two Randomized Control Trials. *Allergy*. 2025;80(4):1006-14.
- Briggs A, Nasser S, Hammerby E, Bucha S, Virchow JC. The impact of moderate and severe asthma exacerbations on quality of life: a post hoc analysis of randomised controlled trial data. *Journal of Patient-Reported Outcomes*. 2021;5(1):6.

Contact Information

Name: Mingxuan Wu

Email: mingxuan.wu@manchester.ac.uk