# An Update on the Evolving Use of Artificial intelligence and Machine Learning (AI/ML) in Systematic Literature Reviews (SLRs)



Sheily Kamra, Loveleen AK, Deepali Moon, Anshu Rajput

IQVIA, Gurugram, India

#### **Background and Objectives**

- SLRs are essential to evidence-based decisions and often require screening thousands of records. As volume of available data increases, more resources are needed for review and analysis<sup>1</sup>
- This increased burden, combined with the emergence of Al/ML tools, presents an opportunity to automate certain SLR tasks, potentially reducing manual
  effort and expediting the review process<sup>2</sup>
- While many researchers have assessed the technical performance of Al/ML tools in SLRs, there is uncertainty on whether these tools truly reduce manual burden, increase efficiency, or improve accuracy<sup>3</sup>
- Extending on our previous work on the use of Al in SLRs, this review aimed to evaluate the functionalities of Al/ML-enabled web-based and software tools across the SLR workflow, with a particular focus on their application in data extraction, quality assessment (QA), and reporting

#### **Methods**

 An update of previous review published in 2023 was conducted to identify Al/ML-based SLRs (Figure 1). Search terms included "AI," "ML," "deep learning," "SLR," "meta-analysis," and specific Al/ML-enabled platforms. No restrictions were applied on indication, treatment or geography

#### Figure 1: SLR methodology



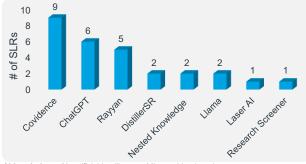
# Databases and Search date

 Targeted literature searches were conducted from 1<sup>st</sup> Jan 2023 till 7<sup>th</sup> June 2025

#### Title/abstract and fulltext screening

Single review process was followed by a random quality check

### Data extraction


 Relevant data were extracted from included studies by a single researcher

#### **Summary of findings**

 Descriptive summary of the findings

#### Results

- Twenty-five SLRs using AI/ML-assisted tools were identified, with a substantial increase in AI/ML tool usage observed over the past two years (from 3 in 2023 to 11 in 2025)
- The most frequently utilised tools were Covidence followed by ChatGPT, Rayyan, DistillerSR, Nested Knowledge and Llama (Llama2-13b, and Llama3-8b) (Figure 2)
  - Figure 2: Most frequently utilised AI/ML tools



Abbreviations: Al, artificial intelligence; ML, machine learning

- Among these identified SLRs, Al/ML was predominantly used in data extraction (n=20), followed by screening (n=10) and QA (n=7), with Covidence, ChatGPT, and Rayyan being the most utilised tools for these steps (Figure 3). Table 1 shows capability of the most frequently used tools
- A limited number of SLRs reported the use of Al/ML for report drafting (n=3) and search strategy development (n=2), all of which utilised ChatGPT

Figure 3: Distribution of selected (most frequently used) Al/ML tools usage across the SLR steps



Abbreviations: Al, artificial intelligence; ML, machine learning; QA, quality assessment; SLR, systematic literature review

Table 1: Capabilities of selected (most frequently used) AI/ML enabled and web-based tools in the SLRs

|                           |   | Covidence                                                                                                                                                             | ChatGPT                                                                                                                                              | Rayyan                                                                                                                                 |
|---------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Al model                  |   | <ul> <li>ML model: Cochrane RCT Classifier</li> <li>Active-learning relevance model<br/>(EPPI-Centre)</li> </ul>                                                      | Web-based GPT-5 model                                                                                                                                | <ul><li>SVM classifier</li><li>Al agents</li></ul>                                                                                     |
| Data<br>extraction        |   | Side-by-side view of PDF and form     Export to Excel/RevMan                                                                                                          | Use in extractions with tailored prompts for predefined, pilot extraction grid Perform independent duplicate extraction on critical/subjective items | <ul> <li>Customise tables and forms</li> <li>Side-by-side view of PDF and form</li> <li>Capture structured answers from PDF</li> </ul> |
| QA                        |   | Built-in templates     Templates can be customised for QA                                                                                                             | Use only as supportive input by<br>giving specific prompts                                                                                           | <ul> <li>No dedicated RoB module</li> <li>QA via custom fields or external tools</li> </ul>                                            |
| Reporting                 |   | <ul> <li>Automated PRISMA 2020 flow<br/>diagram</li> <li>Generates tables for QA and<br/>extractions, which can be exported<br/>and included in the report</li> </ul> | Draft methods, PRISMA section,<br>tables, lay summaries by giving<br>specific prompts                                                                | <ul> <li>Automatic PRISMA 2020 flow</li> <li>Exports available</li> </ul>                                                              |
| Summary of Al integration | ď | Al-integration is only available for<br>extraction, not for QA or reporting                                                                                           | Al-integrated prompts can be<br>developed and tailored to support<br>data extractions, QA and reporting                                              | Al-integration is only available for<br>extraction specifically for institutional<br>customers, not for QA or reporting                |

Abbreviations: Al, artificial intelligence; ML, machine learning; PRISMA, preferred reporting items for systematic reviews and meta-analyses; QA, quality assessment; RCT, randomised controlled trial; RoB, risk of bias; SVM, support vector machine

## Conclusions

- Use of AI/ML tools in the SLRs has evolved rapidly over the past two years, with a growing emphasis on data extraction. This
  represents a notable shift from our 2023 review, where these tools were primarily used for screening. However, its application remains
  limited in tasks such as QA, report drafting, and search strategy development
- These findings suggested that human intervention is necessary to ensure methodological rigour and transparency in evidence synthesis, as AI/ML tools cannot reliably be used independently to conduct end-to-end SLRs