

Factors Associated With the Highest Costs Among US Adults With Primary Biliary Cholangitis

EE460

Robert J. Wong, MD¹; Ira M. Jacobson, MD²; Robert G. Gish, MD³; Ela Fadli, MPH⁴; Gabriel Gomez Rey, MS⁴; Marvin Rock, DrPH⁴; Gary Leung, PhD⁴; Maria Agapova, PhD⁴; Chong Kim, PhD⁴

¹Stanford University School of Medicine, Stanford, CA, USA; ²New York University Grossman School of Medicine, New York, NY, USA; ³Hepatitis B Foundation, Doylestown, PA, USA; ⁴Gilead Sciences, Inc., Foster City, CA, USA

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

Conclusions

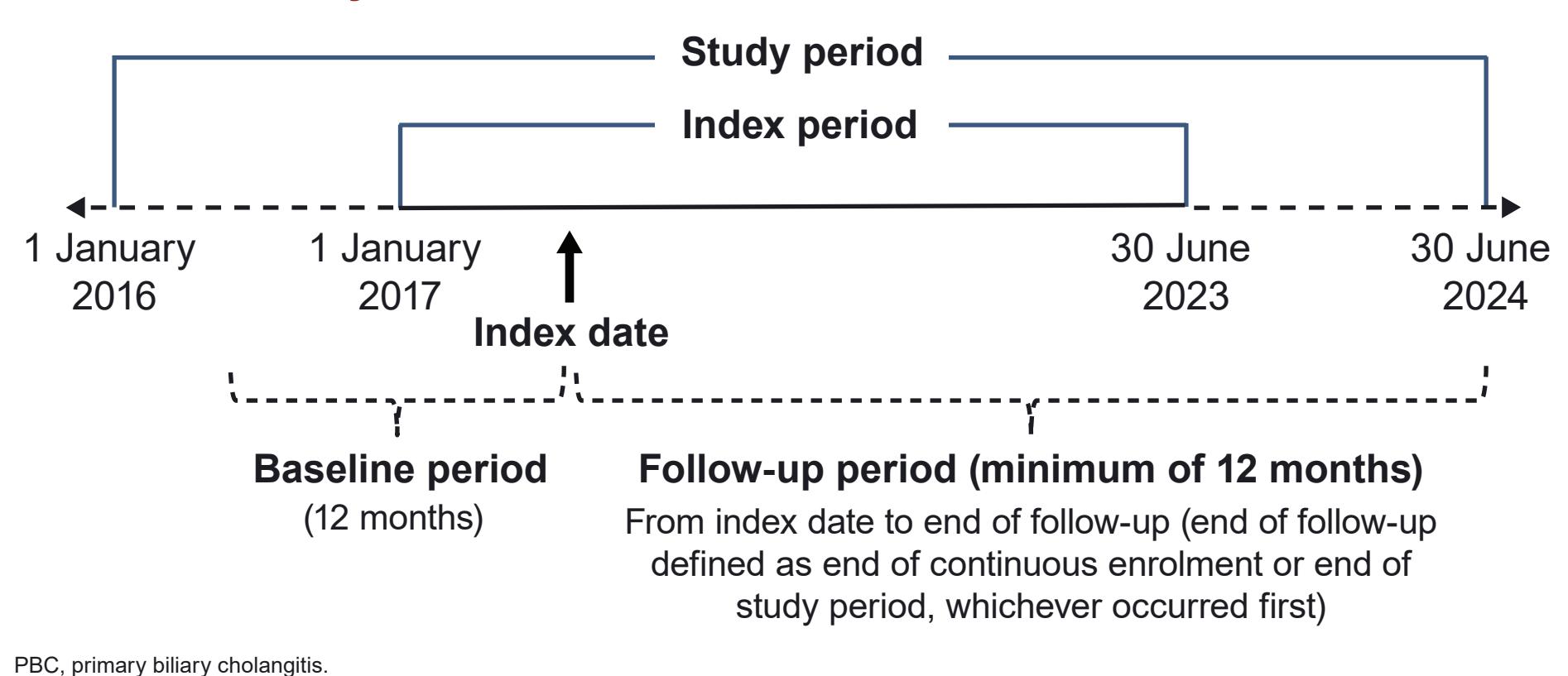
- Among patients with primary biliary cholangitis (PBC) who were identified in the US HealthVerity database, hepatocellular carcinoma, liver transplantation, and decompensated cirrhosis emerged as costly consequences of PBC, highlighting the value of slowing disease progression with available treatment options
- A few specific comorbidities were most strongly associated with the highest costs; these included rheumatoid arthritis, inflammatory bowel disease, cardiovascular disease, and anaemia
- These results suggest that opportunities to contain costs in PBC may include concurrent optimisation of PBC treatment with the treatment of specific comorbidities
- Because patients with PBC may often have comorbidities that also require treatment, therapy options for PBC that have few drug-drug interactions should be considered

Plain Language Summary

- Primary biliary cholangitis (PBC) is a long-term liver disease that gets worse over time
- Many people with PBC may have other health conditions at the same time
- This study looked at what characteristics led to higher all-cause total healthcare costs in people with PBC
- People with PBC who also had signs that their disease was getting worse, specifically those who had hepatocellular carcinoma, liver transplantation, or decompensated cirrhosis, had higher healthcare costs than people without these signs
- In addition, people with PBC who had other health conditions, specifically rheumatoid arthritis, inflammatory bowel disease, cardiovascular disease, or anaemia, also had higher healthcare costs than people without these conditions

Introduction

- Primary biliary cholangitis (PBC) is a chronic, autoimmune, cholestatic liver disease characterised by the progressive destruction of intrahepatic bile ducts that worsens over time¹
- Despite the availability of treatments that can reduce the risk of disease progression, without proper treatment, patients with PBC may develop cirrhosis or require a liver transplant¹
- Patients with PBC have a high burden of comorbidities relative to the general population²
- Additionally, PBC is associated with high costs³
- Because PBC is a complex disease with many comorbidities, it is important to understand which factors lead to higher costs in these patients

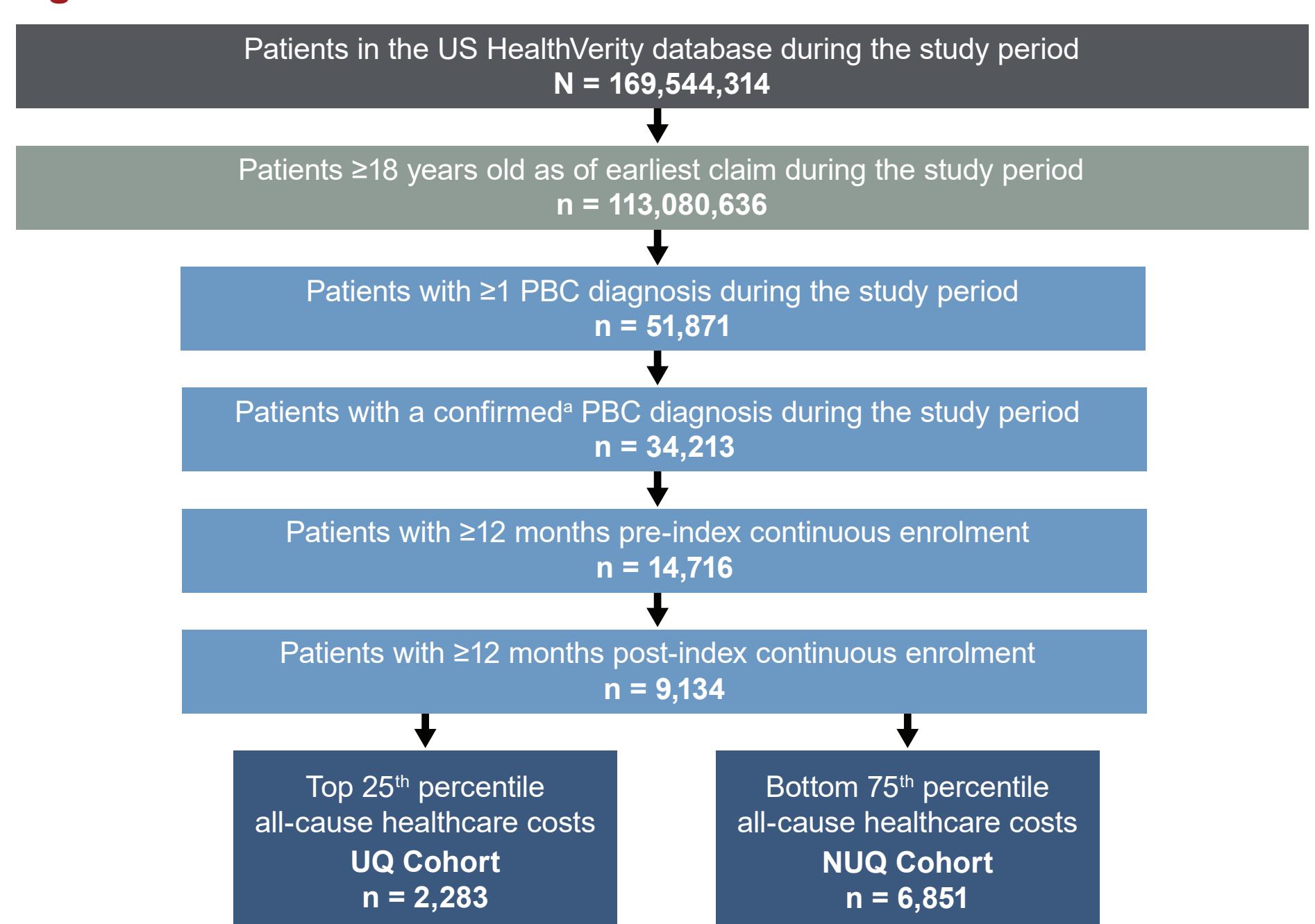

Objective

- Here, we investigated which factors were associated with the highest costs in patients with PBC

Methods

- The US HealthVerity database is a collection of healthcare and consumer data that includes claims from >150 payers across all 50 US states, Puerto Rico, and Washington, DC⁴
 - Approximately 190 million people are included in the database, and it consists of people with commercial insurance and/or Medicare/Medicaid
- This observational, retrospective cohort study used data from the US HealthVerity database between 1 January 2016 and 30 June 2024 to identify adults (aged ≥18 years) diagnosed with PBC (Figure 1)
- Patients with ≥1 inpatient or ≥2 outpatient claims (≥30 days apart) with an ICD-10-CM code of K74.3 and continuous health plan enrolment for ≥12 months pre- and post-index were included in the study
- The index date was defined as the date of the first claim with a PBC diagnosis code

Figure 1. Study Design for Identifying Patients With PBC in the US HealthVerity Database

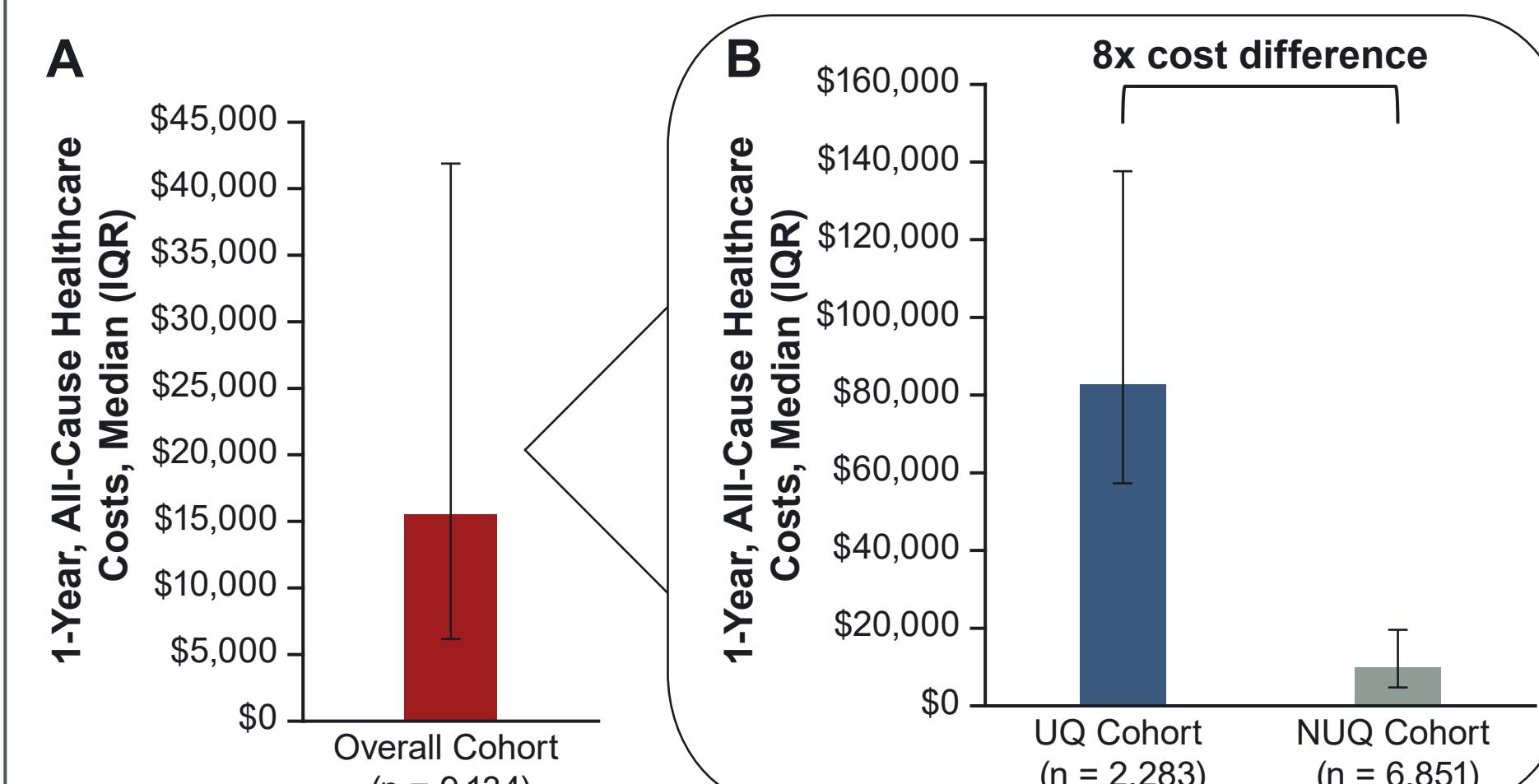


- Outcomes included 1-year, all-cause healthcare costs during the post-index period and an analysis of factors in the post-index period that were associated with the likelihood of having higher all-cause costs
- All-cause healthcare costs (in 2024 US dollars) were tabulated using total allowable charges from medical (inpatient and outpatient) and pharmacy claims; these were obtained for the overall population of patients with PBC
- Patients were then divided into 2 cohorts based on who was in the top 25th percentile for all-cause healthcare costs; these patients were included in the upper quartile (UQ) cohort, and the remaining patients were included in the non-UQ (NUQ) cohort
 - The algorithm used to identify and calculate inpatient costs was updated to better align with the structure of claim source data. This adjustment was necessary to ensure accurate calculation of the patient total costs and their subsequent cohort assignment
- A simultaneous backward and forward stepwise selection logistic regression model was used to evaluate demographic and clinical factors in the post-index period that were associated with higher all-cause costs
 - This model included variables studied descriptively regardless of statistical significance level from the bivariate comparison between the 2 cohorts

Results

- Of the 169,544,314 patients in the US HealthVerity database during the study period, 9,134 patients with PBC met the inclusion criteria (Figure 2)

Figure 2. Patient Selection Criteria



¹Patients with ≥1 inpatient or ≥2 outpatient claims (≥30 days apart) with an ICD-10-CM code of K74.3 were included.
²ICD-10-CM, International Classification of Diseases, Tenth Revision, Clinical Modification; NUQ, non-upper quartile; PBC, primary biliary cholangitis; UQ, upper quartile.

Disclosures: RJW reports research grants to his institution from Direct Corporation; Exact Sciences; Gilead Sciences, Inc.; and Theratechologies. He has served as a consultant (all without compensation) to Gilead Sciences, Inc.; Mallinckrodt Pharmaceuticals; and Salix Pharmaceuticals. IMJ reports receiving consulting fees or serving on advisory boards for Aligos Therapeutics; Arbutus Biopharma; Barinthus Biotherapeutics; CymaBay Therapeutics; Gilead Sciences, Inc.; Intercept Pharmaceuticals; Janssen; Madrigal Pharmaceuticals; Merck; and Moderna; having conducted research (all payments to institution) for 893 Bio; Akero; CymaBay Therapeutics; Eli Lilly; Enanta Pharmaceuticals; Genfit; Gilead Sciences, Inc.; Intercept Pharmaceuticals; and Novo Nordisk; and participating on a data monitoring committee for Aligos Therapeutics; Allimune; GSK; Precision BioSciences; and Takeda. RGG has served as a consultant to Gilead Diagnostics; Sonic Inertics; Topography Health; and Venatrix Pharmaceuticals; serving on scientific or clinical advisory boards for Genentech; Gilead Sciences, Inc.; Helios Pharmaceuticals; HepaTx; HepQuant; Intercept Pharmaceuticals; and Prodigy Health; serving as chair of the clinical advisory board for Prodigy Health; participation in a clinical trials alliance with Topography Health; serving on data safety monitoring boards for Allimune, CymaBay Therapeutics, and Direct Corporation; serving on speakers bureaus for AbbVie; Gilead Sciences, Inc.; and Intercept Pharmaceuticals; is a minor stock shareholder in Riboscience and Cocrystal Pharma; and holds stock options for Angiocrine Bioscience, Genentech, HepaTx, and HepQuant. EFG, MR, GL, MA, and CK are employees of Gilead Sciences, Inc., and may own stock in Gilead Sciences, Inc.

Results

Figure 3. Median (IQR) 1-Year, All-Cause Healthcare Costs (2024 US Dollars) in the Overall (A), UQ, and NUQ Cohorts (B)*

*The UQ cohort represents patients who were in the top 25th percentile for all-cause healthcare costs, while the NUQ cohort represents those who were in the bottom 75th percentile.

¹Results differ from the submitted abstract.

IQR, interquartile range; NUQ, non-upper quartile; UQ, upper quartile.

- In the overall cohort of 9,134 patients with PBC, median (IQR) 1-year, all-cause healthcare costs were \$15,523 (\$6,165–\$41,882; Figure 3A)
- Patients in the top 25th percentile for all-cause healthcare costs were included in the UQ cohort (n = 2,283), and the remaining patients in the bottom 75th percentile were included in the NUQ cohort (n = 6,851)
- In the overall cohort, mean (SD) 1-year, all-cause healthcare costs were \$42,119 (\$111,399)
- Median 1-year, all-cause healthcare costs were 8-fold higher in the UQ cohort compared with the NUQ cohort (Figure 3B), with median (IQR) 1-year, all-cause costs of \$82,799 (\$57,275–\$137,614) in the UQ cohort vs \$9,908 (\$4,731–\$19,618) in the NUQ cohort
- Mean (SD) 1-year, all-cause healthcare costs were \$128,736 (\$198,299) in the UQ cohort and \$13,255 (\$10,601) in the NUQ cohort

Table 1. Demographics in the Overall, UQ, and NUQ Cohorts of Patients With PBC*

Characteristic	Overall Cohort (n = 9,134)	UQ Cohort (n = 2,283)	NUQ Cohort (n = 6,851)	P-Value
Age at index, years, mean (SD)	55 (13.9)	54 (14.6)	55 (13.6)	.0091
Female, n (%)	7,526 (82)	1,699 (74)	5,827 (85)	<.0001
Payer Type, n (%)				
Commercial	4,544 (50)	920 (40)	3,624 (53)	<.0001
Medicaid	2,374 (26)	776 (34)	1,598 (23)	<.0001
Medicare	1,673 (18)	447 (20)	1,226 (18)	.0716
Unknown	543 (6)	140 (6)	403 (6)	.6618

*Results differ from the submitted abstract.

NUQ, non-upper quartile; PBC, primary biliary cholangitis; UQ, upper quartile.

- In the overall cohort (n = 9,134), mean (SD) age was 55 (14) years, and most patients were female (82%) and commercially insured (50%; Table 1)
- In the UQ cohort (n = 2,283), fewer patients were female (74% vs 85%) or commercially insured (40% vs 53%) compared with patients in the NUQ cohort

Table 2. 12-Month Post-Index Comorbidities in the Overall, UQ, and NUQ Cohorts of Patients With PBC*

Characteristic	Overall Cohort (n = 9,134)	UQ Cohort (n = 2,283)	NUQ Cohort (n = 6,851)	P-Value
Comorbidities, n (%)				
GERD	5,518 (60)	1,735 (76)	3,783 (55)	<.0001
Hypertension	4,969 (54)	1,327 (58)	3,642 (53)	<.0001
Dyslipidaemia	4,444 (49)	1,345 (59)	3,099 (45)	<.0001
Arthralgias/bone pain	3,865 (42)	1,289 (56)	2,576 (38)	<.0001
GERD	3,703 (41)	1,268 (56)	2,435 (36)	<.0001
Depression/anxiety	3,701 (41)	1,436 (63)	2,265 (33)	<.0001
Abdominal pain	3,392 (37)	1,617 (71)	1,775 (26)	<.0001
Anaemia	3,097 (34)	1,416 (62)	1,681 (25)	<.0001
Cardiovascular disease	2,983 (33)	1,270 (56)	1,713 (25)	<.0001
Fatigue	2,802 (31)	1,065 (47)	1,737 (25)	<.0001
Cigarette smoking	2,659 (29)	959 (42)	1,700 (25)	<.0001
Type 2 diabetes	2,517 (28)	1,132 (50)	1,385 (20)	<.0001
Chronic kidney disease	2,137 (23)	826 (36)	1,311 (19)	<.0001
Sleep-related disorders	2,125 (23)	1,151 (50)	974 (14)	<.0001
Renal insufficiency	2,046 (22)	858 (38)	1,188 (17)	<.0001
Recurrent UTI	1,624 (18)	806 (35)	818 (12)	<.0001
Diarrhoea	1,442 (16)	476 (21)	966 (14)	<.0001
Osteoporosis/osteopenia	1,327 (15)	383 (17)	944 (14)	<.0001
Autoimmune hepatitis	1,110 (12)	412 (18)	698 (10)	<.0001
Pruritis	924 (10)	339 (15)	585 (9)	<.0001
COVID-19	883 (10)	473 (21)	410 (6)	<.0001
Alcohol	740 (8)	316 (14)	424 (6)	<.0001
Hepatomegaly	671 (7)	293 (13)	378 (6)	<.0001
Rheumatoid arthritis	601 (7)	304 (13)	297 (4)	<.0001
Substance abuse	530 (6)	278 (12)	252 (4)	<.0001
Inflammatory bowel disease	512 (6)	320 (14)	192 (3)	<.0001
Jaundice	400 (4)	143 (6)	257 (4)	<.0001
Systemic lupus erythematosus	247 (3)	127 (6)	120 (2)	<.0001
Splenomegaly	77 (1)	45 (2)	32 (<1)	<.0001
Autoimmune haemolytic anaemia				

*Results differ from the submitted abstract.

GERD, gastro-oesophageal reflux disease; NUQ, non-upper quartile; PBC, primary biliary cholangitis; UTI, urinary tract infection; UQ, upper quartile.

- Generally, patients in the UQ cohort had more comorbidities than patients in the NUQ cohort (Table 2)

— For example, anaemia (UQ = 71%; NUQ = 26%), cardiovascular disease (CVD; UQ = 62%; NUQ = 25%), rheumatoid arthritis (RA; UQ = 13%; NUQ = 6%), and inflammatory bowel disease (IBD; UQ = 12%; NUQ = 4%) were more common among patients in the UQ cohort than among those in the NUQ cohort

Table 3. 12-Month Post-Index Liver Disease and Liver Testing in the Overall, UQ, and NUQ Cohorts of Patients With PBC*

Characteristic	Overall Cohort (n = 9,134)	UQ Cohort (n = 2,283)	NUQ Cohort (n = 6,851)	P-Value
<tbl_info cols="