

Cost-Effectiveness Model of Ranolazine for Treating Chronic Stable Angina Patients from the Kingdom of Saudi Arabia Perspective

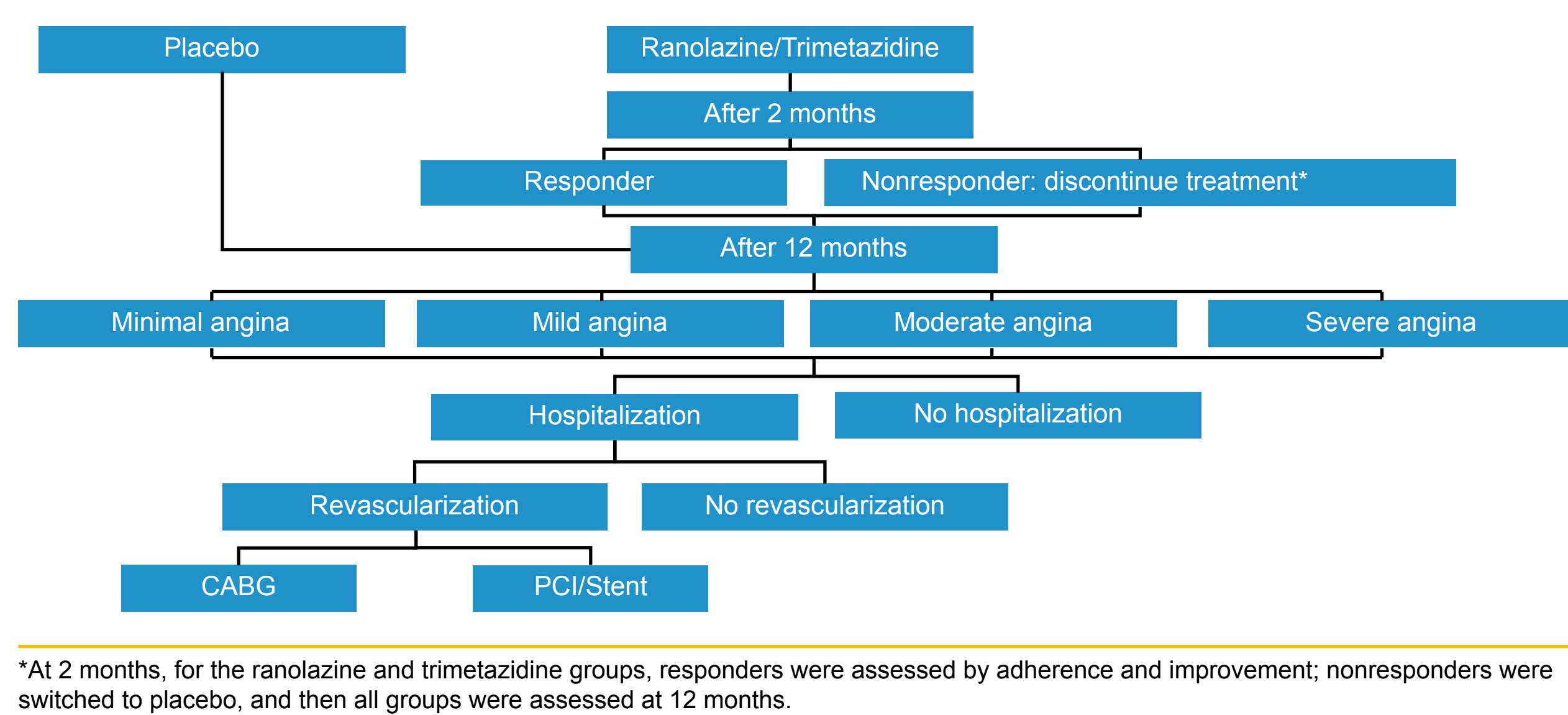
EE231

R. Sharma¹, M. Jain¹, E. Fenu², R. Jamal El Khatib², S. Moreno², F. Alayoubi³

¹RxPremise Solutions Pvt. Ltd., India, ²Menarini Group, Florence, Italy, ³King Saud University Medical City, Riyadh, Saudi Arabia

Introduction

- Chronic stable angina (CSA) is a common cardiovascular condition characterized by chest pain or discomfort that occurs during physical activity or emotional stress.
- Ranolazine is approved for the treatment of CSA as an add-on therapy in patients who remain symptomatic despite optimal medical therapy with beta blockers and nitrates.
- Despite advancements in medical treatment, CSA poses a significant burden on the Saudi Arabian healthcare system. The cost-effectiveness of ranolazine in this system is presented here for the first time.


Objective

To investigate the cost-effectiveness of ranolazine compared with placebo or trimetazidine among adult patients with CSA who remain symptomatic despite treatment with anti-anginal agents from a Kingdom of Saudi Arabia (KSA) public/institution payer perspective.

Methods

- A 1-year decision tree model (Figure 1) was designed to compare the three treatment arms, stratifying outcomes by angina severity (using the Seattle Angina Questionnaire [SAQ]) and including the economic impact of revascularization (coronary artery bypass grafting [CABG] or percutaneous coronary intervention [PCI]/stent).
- Discounting was not applied due to the short 1-year time horizon.
- The analysis focused on direct healthcare costs and effects (quality adjusted life years [QALYs]), derived from the frequency of minimal, mild, moderate, or severe angina from the SAQ, hospitalization rate, and proportion of patients requiring revascularization.

Figure 1: One-year decision tree.

Model Inputs

Table 1: Model inputs – probability of angina frequency outcomes at 2 and 12 months (%).

Probability (%)	Ranolazine & placebo: ERICA trial ¹		Ranolazine & Trimetazidine: Tolunay H 2021 ²		Ranolazine		Trimetazidine	
	Responders	Nonresponders	Responders	Nonresponders	Responders	Nonresponders	Responders	Nonresponders
At the end of 2 months	99	1	NA	NA	99 ¹	1 ¹	95 ^{3,4}	5 ^{3,4}
At the end of 12 months (SAQ) ²	Responders	Nonresponders	Responders	Nonresponders	Responders	Nonresponders*	Responders	Nonresponders*
Minimal angina	4.1	0	0	0	27.1	0.1	2.2	0.1
Mild Angina	60.5	7.1	7.1	7.1	71.7	90.3	97.8	90.3
Moderate Angina	21.8	68.8	68.8	68.8	1.3	9.6	0.03	9.6
Severe Angina	13.6	24.1	24.1	24.1	0	0	0	0

NA, not applicable; SAQ, Seattle Angina Questionnaire. *Non-responder values were based on trimetazidine pre-treatment arm; the severity of angina frequency was estimated indirectly by applying normal distribution to the established SAQ cut-off scores⁵, with the distribution's parameters informed by post-treatment data

- The model used hospitalization probabilities from the MERLIN-TIMI 36 trial (acute coronary syndrome [ACS] specific),⁶ also reported by previous ranolazine economic models for CSA (Table 2). An annual probability of 50% of hospitalized patients undergoing revascularization has been reported,⁷ of which 28% is CABG and 72% is PCI/stent.
- National cost data were used for drug costs, hospitalization rates, and CABG/PCI costs.
- The utilities used in the model, where no hospitalization occurred, are outlined in Table 3. A -0.01 disutility was applied for hospitalization and -0.05 disutility for hospitalization with revascularization.⁸⁻¹⁰

Table 2: Annual probability of hospitalization associated with angina severity (not treatment specific).^{*,6}

Angina severity	Annual probability (%) of hospitalization for patients
Minimal	14
Mild	18
Moderate	20
Severe	29

*8-month rates from MERLIN-TIMI 36 were converted into annual probability using the standard formula

Table 3: Utilities of angina severity.^{8,9}

Angina severity	No hospitalization ^{8,9}
Minimal angina	0.81
Mild angina	0.75
Moderate angina	0.6
Severe angina	0.39

Results

- Compared with placebo, ranolazine reduced the frequency of moderate to severe angina episodes by 61% over 1 year (Figure 2A). This translated to an 8% reduction in both hospitalizations and the need for revascularization procedures (Figure 3A).
- Ranolazine improved overall QALYs at 1 year vs placebo (Table 4).
- Even with a higher ranolazine drug cost, the overall difference in cost was minimal (<10%) due to the added expense of Saudi Arabian Riyal (SAR)/Saudi Riyal (SAR) 449/patient toward hospitalization with/without revascularization with placebo.
- Ranolazine was cost effective against placebo at a willingness to pay (WTP) of SAR 50,000/QALY (Table 4).

Figure 2: Distribution of patients based on angina severity by treatment, A. Ranolazine vs placebo, B. Ranolazine vs trimetazidine.

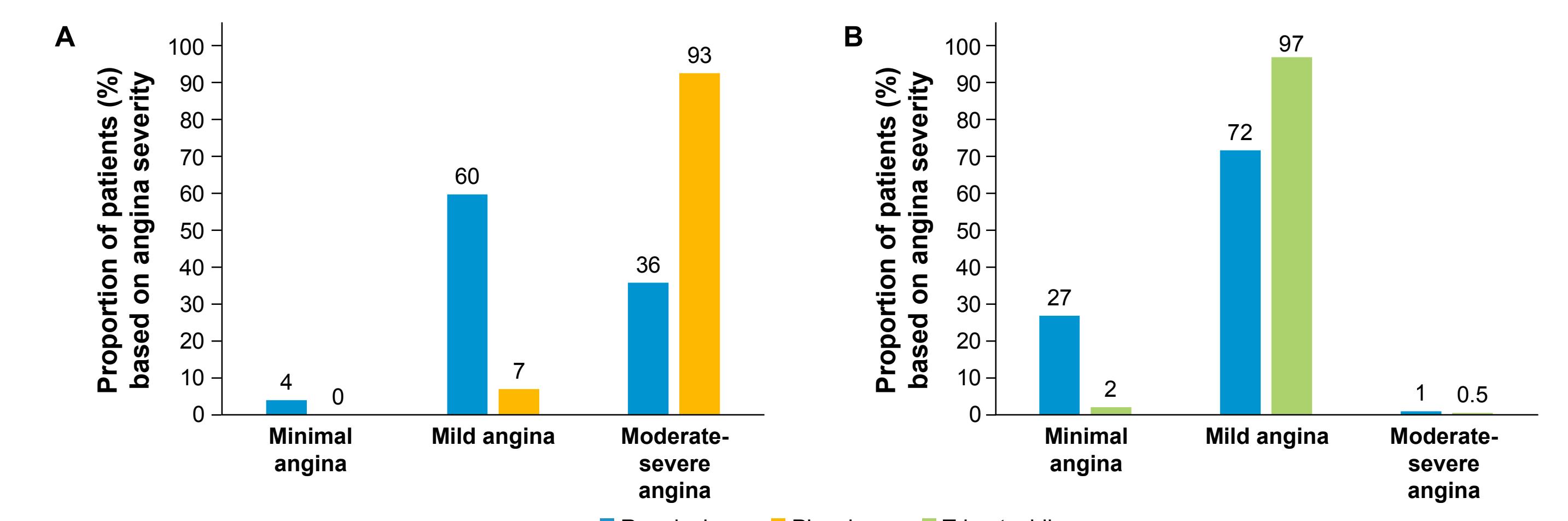
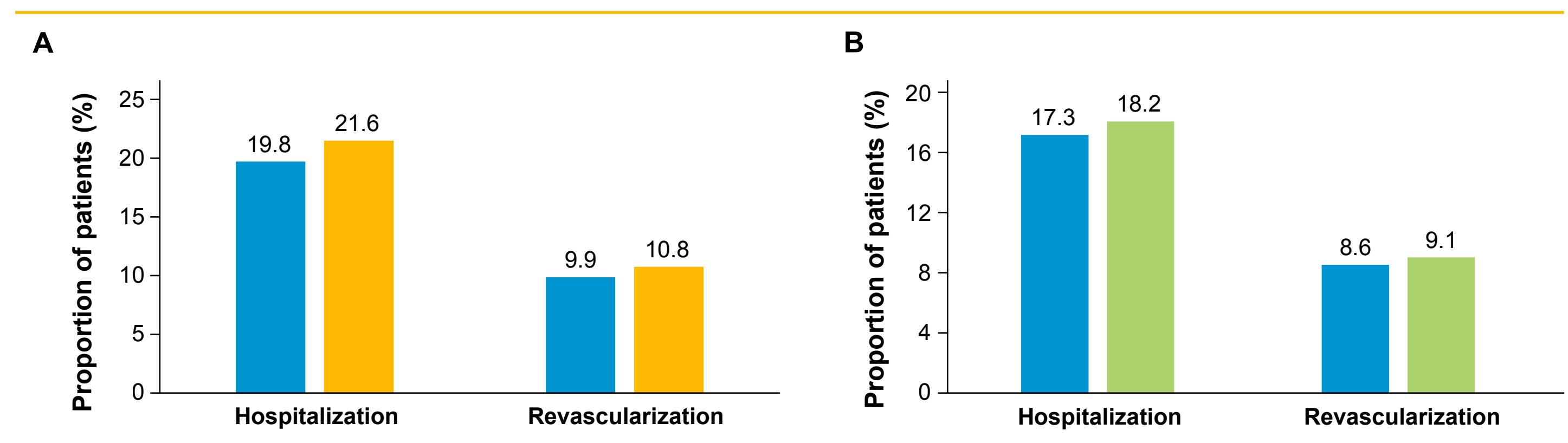



Figure 3: Proportion of patients needing hospitalization and revascularization, A. Ranolazine vs placebo, B. Ranolazine vs trimetazidine.

- Compared with trimetazidine, ranolazine reduced the frequency of mild to severe angina episodes by 25% over 1 year (Figure 2B). This translated to a 5% reduction in both hospitalizations and the need for revascularization procedures (Figure 3B).
- Ranolazine improved overall QALYs at 1 year vs trimetazidine (Table 4).
- Even with a higher ranolazine drug cost, the overall difference in cost was minimal (<7%) due to the added expense of SAR 230/patient toward hospitalization ± revascularization with trimetazidine.
- Ranolazine was cost effective vs trimetazidine at a WTP of SAR 50,000/QALY (Table 4).

Table 4: Summary of costs and QALY results.

	Ranolazine vs placebo		Ranolazine vs trimetazidine	
	Ranolazine	Placebo	Ranolazine	Trimetazidine
Total costs	SAR 7,127	SAR 6,481	SAR 6,494	SAR 6,109
Total QALYs	0.6623	0.5525	0.7579	0.7441
Incremental costs	-	SAR 646	-	SAR 385
Incremental QALYs	-	0.1098	-	0.0137
ICER (SAR/QALY)	-	SAR 5,883	-	SAR 28,017

ICER, incremental cost-effectiveness ratio; QALY: quality adjusted life year; SAR: Saudi Riyal

Conclusions

- This is the first model from a KSA public/institution payer perspective that compared the cost-effectiveness of ranolazine vs placebo or trimetazidine for CSA.
- Ranolazine is a cost-effective treatment compared with placebo and trimetazidine from a KSA public/institution payer perspective, consistent with previously published evaluations.
- The cost-effectiveness of ranolazine is due to reduced angina severity and subsequent lower healthcare resource utilization.

References

- P. H. Stone, N. A. Gratsiansky, A. Blokhin, I.-Z. Huang, and L. Meng. (2006) *J Am Coll Cardiol*, 48(3):566-575.
- H. Tolunay. (2021) *Expert Rev Cardiovasc Ther*, 19(5):457-464.
- H. Szewi et al. (2001) *Eur Heart J*, 22(24):2267-2274.
- M. G. Gizeer and V. A. Vgontzas. (2005) *Circ Cardiol Ther*, 9(2):395-408.
- J. A. Speroff, P. Jones, M. McDonell, V. Fan, and S. D. Finn. (2002) *Circulation*, 106(1):43-49.
- S. V. Arnold et al. (2009) *Circ Cardiovasc Qual Outcomes*, 2(4):344-353.
- L. R. Etemad and P. L. McCollum. (2005) *J Manag Care Pharm*, 11(4):300-306.
- L. Longworth, M. J. Buxton, M. Sculpher, and D. H. Smith. (2005) *Eur J Health Econ*, 6(4):347-353.
- G. Kourlaba, C. Vlachopoulos, J. Parissis, J. Kanakakis, G. Gourzoulidis, and N. Maniadakis. (2015) *BMC Health Serv Res*, 15(1):566.
- A. Hidalgo-Vega, J. M. Ramos-Góñi, and R. Villoro. (2014) *Eur J Health Econ*, 15(9):917-925.

Acknowledgments

The study was funded by Menarini. Medical writing support for the development of this poster, under the direction of the authors, was provided by Madison MacLeay, PhD, of Cactus Life Sciences (part of Cactus Communications) and was funded by Menarini.