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Parametric survival models can predict lifetime
outcomes for cost-effectiveness studies. Models
typically are fitted to individual-patient data (IPD)
using maximum likelihood estimation.

Where IPD are unavailable, e.g. for early cost-
effectiveness studies, models can be fitted to
landmark survival estimates.

An existing tool, Survint (Gallacher 2024)1, has

focused on standard models with simple hazard
functions, which may not adequately represent

the complex hazards observed in oncology.

Here, we expand on the existing methods by
introducing an open-source function for fitting
flexible Royston-Parmar (RP) cubic-spline models
to landmark survival estimates.?

An R function, solve_flexible_coeffs, was
developed to fit RP cubic-spline models to a
vector of user-specified landmark survival
estimates (see function below). Using optim?3
and flexsurvspline* RP spline functions, the
function identifies the set of parameters that
minimise the root mean squared error (RMSE)
of the model predictions versus the landmark
survival inputs.

To test the function, we fitted RP cubic-spline
models to landmark survival estimates extracted
from a publicly available dataset
(cancertrials.io)® and compared survival
projections to the flexsurvspline* RP cubic-
spline models fitted to pseudo IPD from the
same dataset.

Survival extrapolations were compared on a
single plot, using geom_ribbon to represent the
range (maximum — minimum curve) of
projections from each.

Main function 1

solve flexible coeffs <-

function (lands,times,knots s,scale s){
max time <- max(times)

min time <- 0.00001

#Setting up the variables for the knot
positioning, knots are evenly distributed along
the log scale of the time vector

knl«<-1

k n adjusted 1 <- k n 1 + 2

kn2<-2

k n adjusted 2 <- k n 2 + 2

k n3<-3

k n adjusted 3 <- k n 3 + 2

if (knots s <=0 | knots s > 3) #Test to make sure
the user is inputting enough data for a solution
to be found

{print ("NUMBER OF KNOTS SHOULD BE DEFINED AS
1,2,0R 3. PLEASE UPDATE YOUR INPUTS")} elsef

#Define knot locations

if (knots s == 1){

knots location <-

seq(from=1log (min time),to=log (max time) ,length.ou
t = k n adjusted 1)

telse if (knots s == 2){

knots location <-

seq(from=1log (min time),to=log (max time) ,length.ou
t = k n adjusted 2)

}else{knots location <-

seq(from=1log (min time),to=log (max time) ,length.ou
t = k n adjusted 3)}

#Using optim for the flexible spline distribution
parameters

initial params <- rep(0, times = knots s+2)
params <- stats::optim(

par = initial params, #Initial parameter guess

fn = solve flexible fun, #Objective function
lands f=lands,times f=times,knots f=knots locatio
n,scale f=scale s, #Set landmarks, times, knot
location and scale

method = "Nelder-Mead" #Optimization method)

#Returning the outputs

output <- 1list()

output <- list (parameters = paramsSpar,
knot locations = knots location)

return (output) } }

Sub function, used within the main function
solve flexible fun <-

function (x,times f,lands f,scale f,knots f) {
#Calculate the survival function of the flexible
distribution at a vector of time values
preds <- 1 - flexsurv::psurvspline (q=times f,
gamma=x, knots=knots f,scale=scale f)
#Calculate the errors

error <- (abs(lands f-preds)) "2

#Calculate RMSE

rmse <- sqrt (mean(error))

return (rmse) }

Results

The function successfully minimised the RMSE
(<0.03) for the example dataset, predicting curves
that aligned to the user-defined landmark survival
estimates extracted from the observed Kaplan-
Meier data.

The predictions performed well when compared to
the flexsurvspline models fitted to the IPD.
Deviation in the tails of the predicted and IPD
curves was present, and the predictions were
sensitive to the position of the final landmark
timepoint. However, there was substantial overlap
across the two methods.

Example: Non-small cell lung cancer (NSCLC),
pembrolizumab-chemotherapy, progression-
free survival®8

Function performance

+ Figure 1 highlights the function outputs in the
form of 12 flexible survival curves. The curves
accurately reflected the landmark survival
estimates.

» Figure 2 presents the geom_ribbons generated
from solve_flexible_coeffs and flexsurvspline,
and the best statistically fitting curve according
to AIC (informed by flexsurvspline).

* The tail of the geom_ribbon widened more for
the flexsurvspline outputs, compared to
solve_flexible_ coeffs.

* The geom_ribbon from solve_flexible coeffs,
fell almost entirely within the geom_ribbon from
flexsurvspline. The consistency in the
statistically best fitting curve illustrates the
alignment of the two methods.

Removing the final landmark survival estimate

» Our function places universal weight across all
the landmark survival estimates, whereas the
flexsurvspline function places greater weight to
periods with a higher density of events.

* This behavior reduces the variation of the
curves from solve_flexible_coeffs, compared to
the flexsurvspline outputs (Figure 2).

« By removing the final landmark survival
estimate, we can increase the variation in the
tails of the curves (Figure 3) and potentially
achieve more accurate long-term predictions.

» Future work could formalise this approach by
including weights in the error minimisation step,
to alter the influence of the individual
landmarks in the model predictions.

Figure 1: Outputs from solve_flexible_coeffs
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Figure 2: Comparison of solve_flexible_coeffs and
flexsurvspline
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Figure 3: Removal of the final landmark survival estimate
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Conclusions

* In testing the function successfully minimised
the RMSE across for the example dataset and
produced survival curves that align with
flexsurvspline outputs, validating its
performance.

+ Limitations include the universally weight
attributed to all landmark estimates. Hence
the function is sensitive to the choice of user
defined inputs, particularly at the later
timepoints. Future work could consider
including weights in the error minimisation
step.

Overall, in the absence of IPD, this function
offers users the ability to capture more
complex survival functions, reducing the need
to rely on simpler models which may fail to
capture the true survival trajectory for
oncology diseases.
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