

# Uncertainty Assessment in Economic Evaluations of Artificial Intelligence-based Health Technologies: Pitfalls and Recommendations

Mabel Wieman<sup>A</sup>, Bram Ramaekers<sup>A</sup>, Laure Wynants<sup>A</sup>, Inigo Bermejo<sup>B</sup>, Andrea Gabrio<sup>A</sup>, Nigel Armstrong<sup>C</sup>, Marie Westwood<sup>D</sup>, Manuela Joore<sup>A</sup> & Sabine Grimm<sup>A</sup>

<sup>A</sup>Maastricht University, Maastricht, Netherlands, <sup>B</sup>University of Hasselt, Diepenbeek, Belgium, <sup>C</sup>Kleijnen Systematic Reviews Ltd., York, UK, <sup>D</sup>University of Bristol, Bristol, UK

## Introduction

Despite **Artificial Intelligence (AI)**'s growing potential in clinical care, **inadequate evidence** on (cost-)effectiveness often hinders adoption.<sup>1,2</sup> For successful clinical implementation and societal impact, **robust economic evaluations (EEs)** with **uncertainty assessment**, are essential.<sup>3</sup>

## Aim

To **identify common uncertainties** in EEs of AI-based health technologies used in clinical care. Explore how these uncertainties are **currently assessed** in existing model-based EEs. **Formulate recommendations** for practice and research.

## Understanding Uncertainty in EEs of AI

Three uncertainties within EEs of AI were defined: (1) Transportability, (2) Human-AI collaboration, and (3) Performance dynamics. All three are caused by **unavailability** and/or **indirectness** of the evidence and can manifest in multiple **model aspects**.<sup>3-6</sup>

Existing EEs **occasionally addressed** transportability and human-AI collaboration, but not performance dynamics.<sup>7,8</sup>

**TRANSPORTABILITY** = AI performance can be affected by differences between the target setting and the development setting

**HUMAN-AI COLLABORATION** = AI performance is often directly compared with that of humans, but in real-life human-in-the-loop systems are more common

**PERFORMANCE DYNAMICS** = AI performance can change over time due to model drift and updates

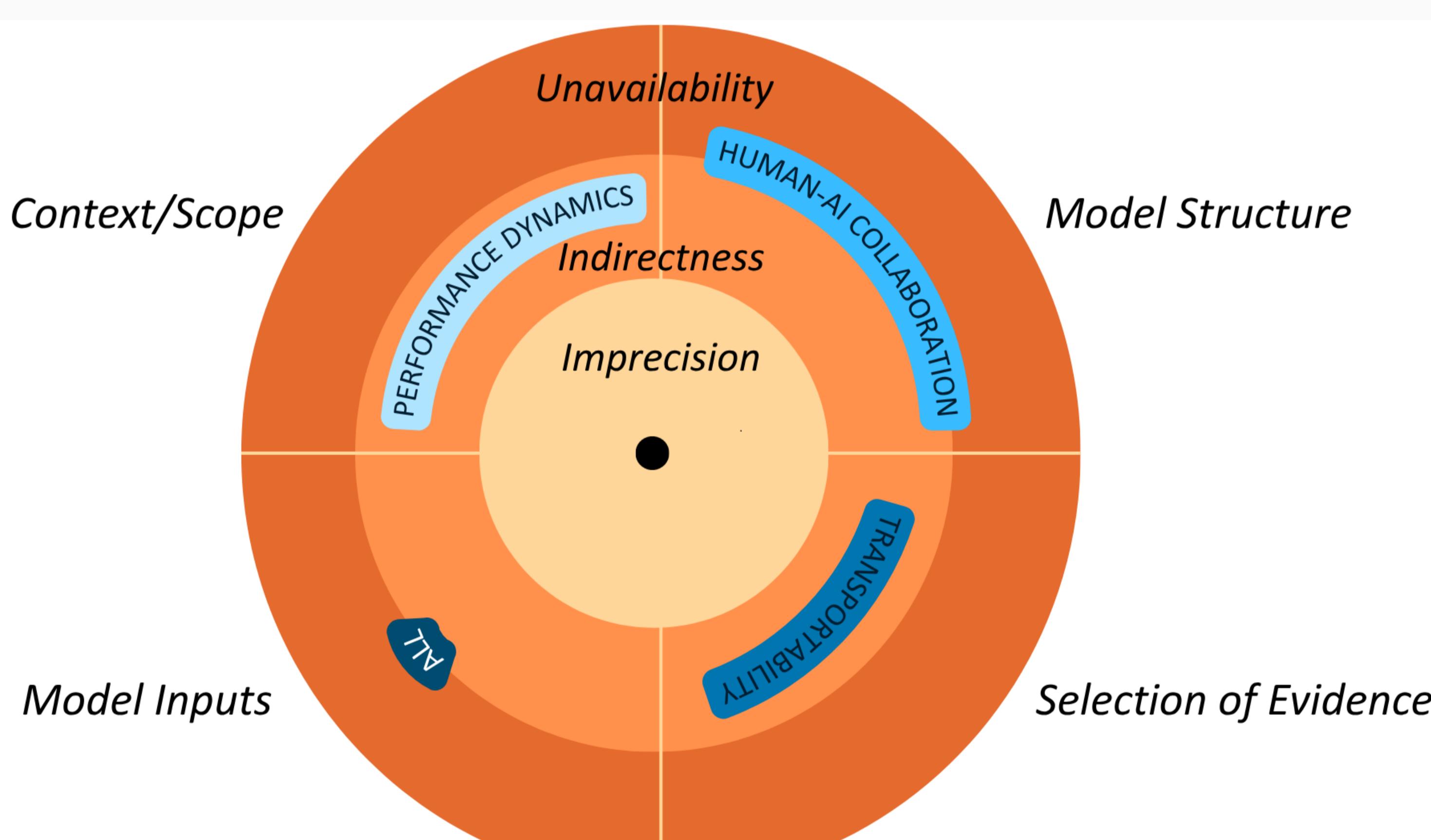



Figure 1: Understanding uncertainty in AI-based health technologies: multiple dimensions

## Recommendations for future EEs of AI

We give **general** approaches for **identifying and analyzing** all uncertainties, and **specific** methods tailored to the three common uncertainties, based on literature on existing EEs and uncertainty assessment methods.<sup>7-9</sup>

### TRANSPORTABILITY

- Random effect meta-analysis

### HUMAN-AI COLLABORATION

- Reliance discrepancy terms

### PERFORMANCE DYNAMICS

- Life-cycle assessment methods including VOI analysis

### ALL

- Systematic uncertainty identification  
- TRUST  
- GRADE, PROBAST+AI, QUADAS-2 or APPRAISE  
- Structured expert elicitation  
- Discrepancy approaches  
- Scenario analysis & model averaging

**Abbreviations:** TRUST = Transparent Uncertainty Assessment Tool, GRADE = Grading of Recommendations Assessment, Development and Evaluation, PROBAST+AI = Prediction model Risk Of Bias Assessment Tool, QUADAS-2 = Quality Assessment of Diagnostic Accuracy Studies

## Conclusion

- ❖ AI-based health technologies have the potential to transform the health care sector, but uncertainties within model-based EEs, often caused by a **lack of context-specific evidence**, need to be appropriately managed.
- ❖ We have developed recommendations for uncertainty identification and analysis for assessing **transportability, human-AI collaboration, and performance dynamics**.
- ❖ Further research is needed to **apply and further refine these methods** in future EEs of AI-based health technologies.

## References

<sup>1</sup>Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. *BMC Med.* Oct 29 2019;17(1):195. doi:10.1186/s12916-019-1426-2

<sup>2</sup>Hendrix N, Veenstra DL, Cheng M, Anderson NC, Verguet S. Assessing the Economic Value of Clinical Artificial Intelligence: Challenges and Opportunities. *Value Health*. Mar 2022;25(3):331-339. doi:10.1016/j.jval.2021.08.015

<sup>3</sup>Grimm SE, Pouwels X, Ramaekers BLT, et al. Development and Validation of the TRansparent Uncertainty ASsessmentT (TRUST) Tool for Assessing Uncertainties in Health Economic Decision Models. *Pharmacoconomics*. Feb 2020;38(2):205-216. doi:10.1007/s40273-019-00855-9

<sup>4</sup>Van Calster B, Steyerberg EW, Wynants L, van Smeden M. There is no such thing as a validated prediction model. *BMC Medicine*. 2023/02/24 2023;21(1):70. doi:10.1186/s12916-023-02779-w

<sup>5</sup>Reverberi C, Rigon T, Solari A, et al. Experimental evidence of effective human–AI collaboration in medical decision-making. *Scientific Reports*. 2022/09/02 2022;12(1):14952. doi:10.1038/s41598-022-18751-2

<sup>6</sup>Vela D, Sharp A, Zhang R, Nguyen T, Hoang A, Pianykh OS. Temporal quality degradation in AI models. *Scientific Reports*. 2022/07/08 2022;12(1):11654. doi:10.1038/s41598-022-15245-z

<sup>7</sup>Vithlani J, Haworth C, Elvidge J, Ayiku L, Dawoud D. Economic evaluations of artificial intelligence-based healthcare interventions: a systematic literature review of best practices in their conduct and reporting. *Front Pharmacol*. 2023;14:1220950. doi:10.3389/fphar.2023.1220950

<sup>8</sup>Voets MM, Veltman J, Slump CH, Siesling S, Koffijberg H. Systematic Review of Health Economic Evaluations Focused on Artificial Intelligence in Healthcare: The Tortoise and the Cheetah. *Value Health*. Mar 2022;25(3):340-349. doi:10.1016/j.jval.2021.11.1362

<sup>9</sup>Otten TM, Grimm SE, Ramaekers B, Joore MA. Comprehensive Review of Methods to Assess Uncertainty in Health Economic Evaluations. *Pharmacoconomics*. Jun 2023;41(6):619-632. doi:10.1007/s40273-023-01242-1

## Correspondence to:

Mabel Wieman, Maastricht University/MUMC+

mabel.wieman@mumc.nl  
www.mumc.nl/research/kemta

Dept of Clinical Epidemiology and Medical Technology Assessment

T +3143 387 5559

Gaetano Martinolaan 85, niveau 7/8  
Postadres: Postbus 5800 | 6202 AZ Maastricht