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- Multivariable linear regression and logistic regression were Medion [Q1:Q3 gooreviation: €l = Confidence Interval; df = degrees of
used to assess the predicto rs of patient Compliance (%) Table 1. Descriptive statistics of the study population Table 2. Predictors of patient compliance: results

from multivariable linear regression modeling

and dropout. Continuous covariates were modeled as
linear predictors or using natural cubic splines, with the
optimal functional form (linear to 5 knots) selected based
on the Akaike Information Criterion (AIC) and likelihood
ratio tests.

Figure 1. Nonlinear associations between compliance
and covariates after spline transformation in linear
regression model

A. Age, years;

B. GDP per capita, US $;

C. Interactions initiated by Axios at enrolment;

D. Interactions initiated by patients at enrolment.
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« Complementary analyses were performed using a random
forest algorithm (R package ranger) to explore variable
importance and potential non-linear interactions. Results
were illustrated using variable importance plots and SHAP
(SHapley Additive exPlanations) value visualizations.
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Preliminary analysis found that the main disease areas were
oncology (43.3%) and immunology (22.1%). Mean age was
48.9 years (xstandard deviation 19.1; sex ratio M:F=0.92). The .
overall mean compliance was 46.2%+37.2. L o=
Significant predictors of compliance included: Dermateiogy
« Age: higher compliance in older and younger patients |
« Treatment domain: highest in Endocrinology, e estom s A Sender, women B
Pulmonology, and Immunology e e
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axis, it means higher values of predictor_A lead to higher predicted compliance.

Saudi Arabia, where access program patients are likely not
representative of the country's wealth
* Interactions between Axios and the patient at the
inception of the program, with:
o |ncreasing compliance with nb of patient interest
interactions
o U-curves for interactions around enrolment with
generally better compliance around zero interactions
or highest interactions

CONCLUSION

These findings underscore the value of machine
learning in identifying factors contributing to non-
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compliance and program dropout. The insights
generated can support the design of tailored

interventions to improve treatment compliance L earn more about
and retention across diverse patient populations. Axios International
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