

Increased adherence to biologic therapies leads to lower all-cause and asthma-related HCRU costs in severe asthma

Njira L Lugogo¹, Brian Modena², Justin Kwiak³, Jiaxuan Wang⁴, Peter Howarth⁵, Riyad Al-Lehebi^{6,7}, Anna Vichiendilokkul⁸, Urvee Karsanji⁹, Jeremiah Hwee¹⁰, Gerald Smith⁴, Riley Geason¹¹, Arijita Deb¹², Rafael Alfonso-Cristancho^{12*}

This poster is being presented by Elise Kuylen (an employee of GSK) on behalf of the authors

¹Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA; ²Modena Health, La Jolla, CA, USA; ³Medical Affairs, GSK, Upper Providence, PA, USA; ⁴Cytel Inc., Vancouver, BC, Canada; ⁵Global Medical Affairs, GSK, London, UK; ⁶Department of Pulmonology, King Fahad Medical City, Riyadh, Saudi Arabia; ⁷College of Medicine, Al-Faisali University, Riyadh, Saudi Arabia; ⁸Global Medical Affairs, GSK, Collegeville, PA, USA; ⁹Real World Biostatistics, GSK, London, UK; ¹⁰Global Epidemiology, GSK, Mississauga, ON, Canada; ¹¹Real World Evidence, Cytel Inc., Boston, MA, USA; ¹²Global Real World Evidence & Health Outcomes Research, GSK, Collegeville, PA, USA

*At the time of the analysis

Higher adherence to biologic therapies was associated with reduced all-cause and asthma-related HCRU costs in patients with severe asthma, highlighting the importance of treatment adherence in optimising clinical and economic outcomes and guiding therapeutic decisions

SCAN ME

Background

- Inconsistent control of inflammation in severe asthma can lead to unpredictable exacerbations, significant morbidity and mortality and reduced QoL, placing a substantial burden on patients and HCRU¹
- Despite optimal use of standard of care therapies (SABA, ICS, LABA, and OCS), some patients with severe asthma do not achieve adequate disease control; for these patients, add-on biologic therapy may be an appropriate option²
- Clinical trials have shown that biologics can reduce exacerbations, improve lung function and enhance QoL in patients with severe asthma³
- Previous research suggests that adherence to biologic therapy is associated with improved clinical outcomes,⁴ but evidence remains limited and further studies are needed

Aim

To evaluate the relationship between adherence to biologic therapy and HCRU costs

Methods

GSK ID: 214570; Study design

Patient inclusion criteria

- ≥18 years of age
- Asthma diagnosis* in the 12 months prior to first biologic administration
- Initiated 1 of 6 approved asthma biologics: benralizumab, dupilumab, mepolizumab, omalizumab, reslizumab or tezepelumab¹
- No prior asthma biologic use at any time prior to index
- Unique ICS + LABA prescription within 90 days prior to and including asthma diagnosis date

Patient exclusion criteria

- Previous diagnosis of lung malignancies, TB or CF[‡] any time prior to index
- Diagnosis of chronic spontaneous urticaria or atopic dermatitis[‡] with ±7 days of index
- Prescriptions of multiple biologics on index date
- No evidence of prescriptions from a dermatologist at any time
- HES and EGPA diagnosis[‡] any time before the end of follow-up

Cross-sectional cohort study (1 Jan 2007–30 Jun 2023)

Data source
US EHR claim-linked data from the Optum[®] Market Clarity database

Index date
First biologic administration date (varies by patient)

Baseline period
↔
Follow-up period
↑
↓
≥12 months continuous enrolment in both medical and pharmacy coverage
≥12 months follow-up without loss-to-follow-up or death

Outcomes
(assessed by adherence clusters during follow-up)

- All-cause events costs[¶]
- Asthma-related events costs[¶]

Patients' biologic adherence was assessed using MPR and categorised by adherence level into one of 7 distinct clusters modelled by logistic regression in GBTM analysis

*Based on ICD-9-CM 493x and ICD-10-CM J46x codes from either EHR or claims databases; [†]biologic prescriptions and administrations identified using HCPCS and NDC codes; [‡]based on ICD-9-CM/ICD-10-CM codes from either EHR or claims databases; [¶]MPR for each biologic was calculated by dividing the number of days with medication possession by the total number of days in the 12-month follow-up; [§]biologic administration-related costs were excluded from all-cause and asthma-related event costs

Results

Figure 1: Of the 9553 patients who did not switch biologic therapy during the follow-up and were included in GBTM, 21.2% were highly adherent to their biologic therapy (Cluster A)

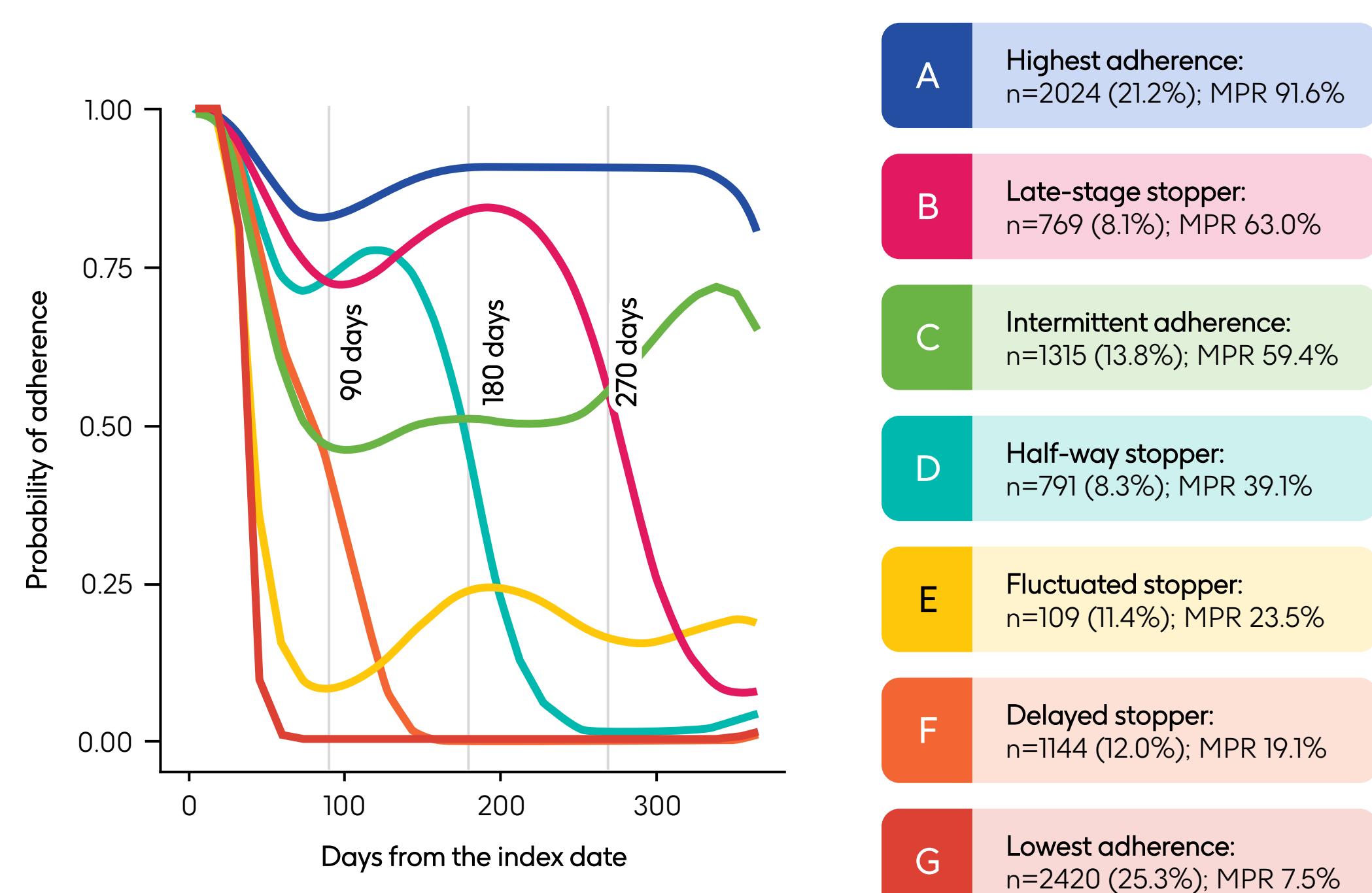


Table 1: Baseline patient characteristics were generally comparable across clusters, except for higher proportion of obese patients and higher weighted CCI in the low-adherent clusters (E, F, G)*

	Cluster A	Cluster B	Cluster C	Cluster D	Cluster E	Cluster F	Cluster G
Age, years, median (IQR)	57.8 (48.1, 65.7)	55.0 (44.9, 64.0)	55.4 (44.9, 63.5)	55.2 (44.3, 63.0)	56.3 (45.4, 65.7)	56.6 (44.2, 64.8)	56.3 (44.2, 65.4)
Female (%)	64.6	67.2	64.9	60.9	62.8	65.6	66.1
Race (%)	African American 11.3 Asian 1.6 Caucasian 76.2 Other/Unknown 10.9	African American 13.3 Asian 1.8 Caucasian 71.7 Other/Unknown 13.3	African American 13.4 Asian 1.4 Caucasian 71.2 Other/Unknown 14.1	African American 15.9 Asian 1.9 Caucasian 70.3 Other/Unknown 11.9	African American 16.6 Asian 2.8 Caucasian 69.9 Other/Unknown 10.7	African American 11.8 Asian 2.2 Caucasian 74.1 Other/Unknown 11.9	African American 15.8 Asian 1.9 Caucasian 72.2 Other/Unknown 10.1
BMI (%)	Underweight 0.5 Normal 8.2 Overweight 17.9 Obese 34.0 Unknown 39.3	Underweight 0.3 Normal 9.5 Overweight 14.7 Obese 32.6 Unknown 42.9	Underweight 0.5 Normal 7.9 Overweight 13.3 Obese 29.3 Unknown 49.0	Underweight 0.1 Normal 8.5 Overweight 13.5 Obese 32.5 Unknown 45.4	Underweight 0.9 Normal 11.5 Overweight 19.3 Obese 42.8 Unknown 25.6	Underweight 0.6 Normal 9.2 Overweight 16.3 Obese 38.1 Unknown 35.8	Underweight 0.6 Normal 10.6 Overweight 20.0 Obese 45.6 Unknown 23.3
Weighted CCI, median (IQR)	27 (0.216)	27 (0.162)	27 (0.216)	27 (0.216)	108 (0.297)	54 (0.216)	135 (0.297)
Blood IgE level, median (IQR)	184.0 (52.5, 539.9)	153.5 (59.3, 406.8)	171.0 (61.3, 440.3)	183.8 (59.0, 497.0)	181.1 (61.8, 487.3)	186.1 (73.4, 552.8)	177.0 (62.5, 445.5)
BEC, median (IQR)	220.0 (100.0, 460.0)	210.0 (100.0, 500.0)	200.0 (100.0, 400.0)	200.0 (100.0, 421.5)	200.0 (100.0, 400.0)	200.0 (100.0, 400.0)	200.0 (100.0, 400.0)
FEV ₁ , median (IQR)	1.6 (1.2, 2.1)	1.6 (1.3, 2.0)	1.6 (1.1, 1.9)	1.6 (1.2, 2.0)	1.6 (1.1, 1.9)	1.6 (1.2, 1.9)	1.6 (1.3, 1.9)

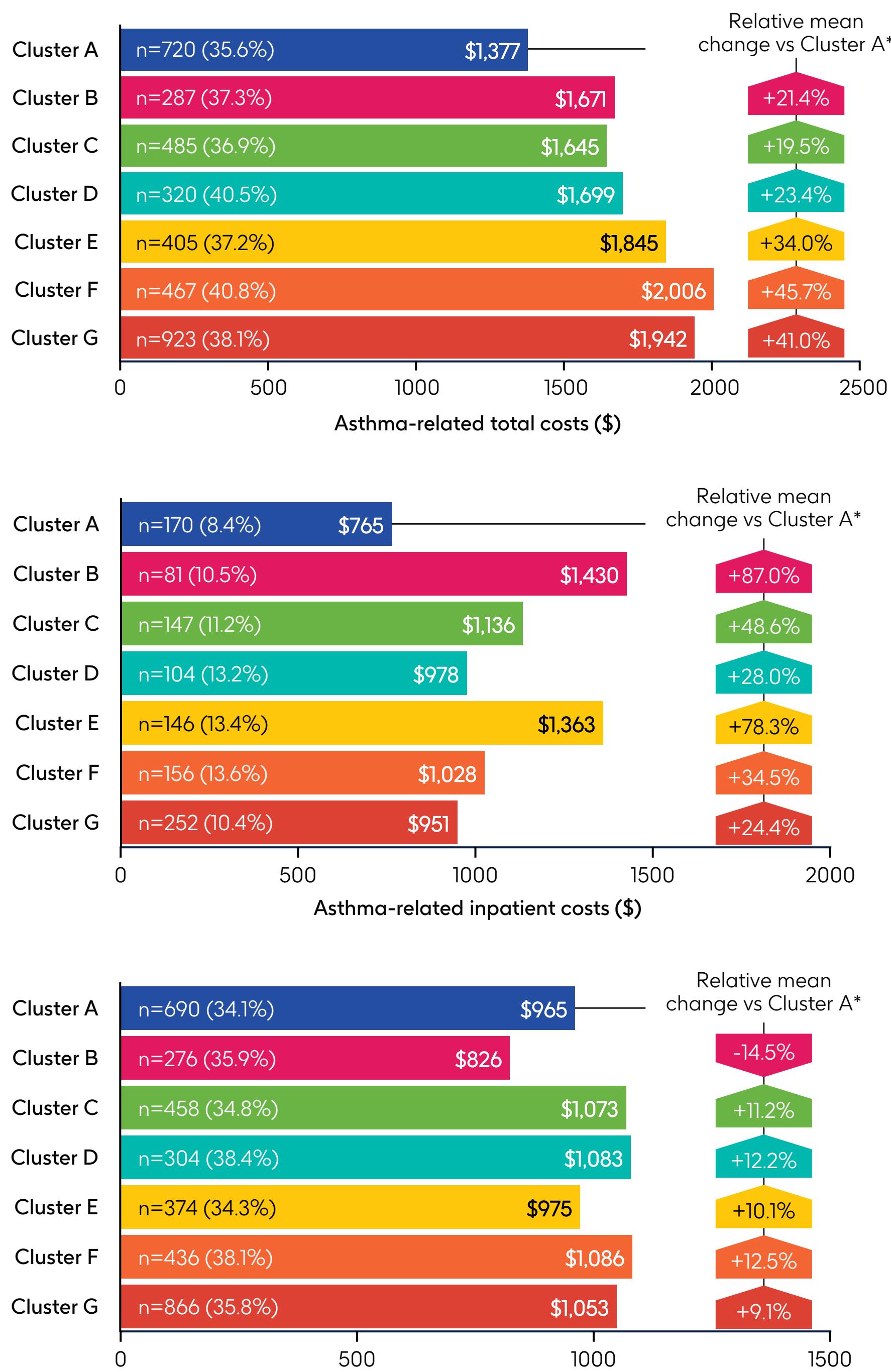

*Missing data may have influenced the differences across clusters and limited interpretability of some findings

Figure 2: All-cause healthcare costs were generally higher in clusters with lower adherence across all categories compared with Cluster A, except for event-specific and outpatients costs, which were lower in Cluster B

*Relative mean change was calculated by dividing the cost difference between Clusters B–G and Cluster A by mean cost for Cluster A

Figure 3: Asthma-related total costs generally increased with decreasing adherence across Clusters A–G compared with Cluster A, while inpatient and outpatient costs did not show a clear trend by adherence level

*Relative mean change was calculated by dividing the cost difference between Clusters B–G and Cluster A by mean cost for Cluster A

Conclusions

Higher biologic adherence was consistently associated with reduced all-cause and asthma-related HCRU costs in patients with severe asthma

These findings highlight the importance of supporting adherence to biologics to achieve both clinical and economic benefits

Demonstrated reductions in costs strengthen the case for adherence-enhancing strategies, including biologics with longer dosing intervals, patient support programmes and adherence-focused interventions

Abbreviations

BEC, blood eosinophil count; BMI, body mass index; CCI, Charlson Comorbidity Index; CF, cystic fibrosis; EGPA, eosinophilic granulomatosis with polyangiitis; EHR, electronic health record; FEV