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OBJECTIVE
• Develop a systematic and scalable dynamic programming (DP) approach to optimize the 

placement of knots for piecewise survival modeling.
• Illustrate the predictive ability and flexibility of the approach in a case-study. 

INTRODUCTION

•The proposed DP approach aimed to approximate the smoothed, cumulative hazard function with a 
prespecified number of linear segments. While each linear segment represents a piece of exponential 
distribution for survival outcomes, adjacent segments may not be continuously connected. 

•For practical purposes, without loss of generality, candidate locations for knots used to partition the 
smoothed, cumulative hazard function were considered on a monthly basis.

•The objective was to minimize the cumulative Bayesian Information Criteria (BIC) associated with the 
number of knots as well as the linear segments used to approximate the corresponding partitions of the 
smoothed, cumulative hazard function.

•BIC score for each candidate linear segment was indirectly estimated by minimizing sum of squared-
errors associated with its fit to the corresponding partition of the cumulative hazard function 

•Placement of each additional know was penalized to avoid the overfitting bias
•Locations of knots were optimized in a backward recursion using estimated BIC scores associated with 
adjacent candidate segments and penalties associated with each knot.

•The method consisted of four main steps:
Step 1. Reconstruction of synthetic survival data from published Kaplan-Meier (KM) curves
Step 2. Generation of cumulative smoothed hazard function using reconstructed survival data
Step 3. Formulation and solution of the following recursive equations, also referred as the “optimality 
equations”, of the DP model for a prespecified maximum number of N knots
𝐽𝑘 𝑛 =  𝑚𝑖𝑛

𝑖>𝑘
𝑣 𝑘, 𝑖 + 𝐽𝑖 𝑛 − 1  for 𝑘 = 0,1, … , 𝑇 − 1, and n = 1,…,N, with the boundary conditions 

𝐽𝑘 0 = 𝐵𝐼𝐶(𝑘, 𝑇), 𝑘 = 0,1, … , 𝑇 − 1 and 𝐽𝑇 𝑛 = 0, n = 0,…,N; where
Jk(n): The optimal value function of the DP, i.e., the overall minimum BIC score associated with modeling 
the cumulative hazard function beyond month k with n knots. 
Ji(n-1): The minimum BIC score associated with modeling the cumulative hazard function beyond month i 
with n-1 knots. 
v(k,i): Optimized BIC score associated with the linear segment modeling the partition of cumulative 
hazard function between months k and i (inclusive).
BIC(k,T): The BIC score associated with the linear segment modeling the partition of cumulative hazard 
function between months k and T (inclusive). 
T: Maximum reported time in months along the KM curve.
N: Maximum number of knots allowed.
Step 4. Identification of knot locations based on optimal solutions to the recursive equations of DP
• The DP algorithm works iteratively in a backward fashion by breaking the problem into smaller 
overlapping subproblems.3 By eliminating redundant calculations and storing the solutions of 
subproblems, DP significantly reduces the exponential space and time complexity of knot-placement 
problem to a polynomial order. For example, for placement of 3 knots across 120 candidate months, 
there are 261,800 candidate solutions. With the DP approach, an optimal solution can be constructed 
without complete enumeration of these solutions and by solving only 7,260 subproblems (≥97.2% 
reduction in problem size) which are of smaller scale than the original problem.

•For any given month evaluated as a candidate for a knot placement, the algorithm builds a route with 
the lowest BIC score to all possible future months as the next candidate knot location. This procedure 
uses previously computed subpaths connecting the subsequent knot location to the end of the follow-
up and their corresponding minimum BIC scores, and the route from the current month with minimum 
overall BIC score is labeled as optimal. The recursion is repeated until the time of randomization. 

•The DP-approach was illustrated on published progression-free survival (PFS) and overall survival (OS) 
data from the CheckMate-067 trial in treatment-naive advanced melanoma.4

•CheckMate-067 was a global, phase III, randomized controlled trial evaluating efficacy and safety of 
nivolumab (NIVO) plus ipilimumab (IPI), NIVO alone, and IPI alone as first-line treatments for treatment-
naïve advanced melanoma4. Recently, published data from this study with over 10 years of follow-up 
offer one of the most comprehensive long-term views on the long-term efficacy of immune checkpoint 
inhibitors in treatment-naïve advanced melanoma. 

•Because of mature data demonstrating sustained, long-term survival benefit with clear plateaus, 
CheckMate-067 is often used in cost-effectiveness analyses and case studies analyzing the performance 
of novel survival modeling approaches for immune checkpoint inhibitors5-11.

•Even though the DP approach can flexibly accommodate any pre-specified number of knots to partition 
the cumulative hazard function, to avoid overfitting bias, for each endpoint, up to 2 knots were used in 
the case study.

•For statistical reliability of long-term extrapolations, in both PFS and OS analysis, tail segments were 
required to cover ≥20% of the total number of events in the data. Sensitivity analyses explored piecewise 
modeling by restricting this fraction of events covered by the tail segment to ≥10%.

•The R programming language was used to implement the DP algorithm, including the bshazard package, 
which was employed to generate the smoothed hazard functions.

METHODS

FIGURE 1. Visual illustration of the DP approach applied to the PFS and OS data from the NIVO arm of CheckMate-067 
A) Smoothed cumulative hazard function obtained from reported PFS data and corresponding optimized piecewise linear 
cumulative hazard function; B) Reported and modeled PFS using optimized piecewise exponential approach; C) Smoothed 
cumulative hazard function obtained from reported OS data and corresponding optimized piecewise linear cumulative 
hazard function; D) Reported and modeled OS using optimized piecewise exponential approach

• Extrapolation of survival outcomes beyond limited trial follow-up is a common and integral part of 
economic evaluations in health technology assessments.
• Extrapolation of reported survival outcomes conventionally relies on standard parametric models 
(SPMs) due to their ability to represent the underlying hazards in a compact, clinically intuitive and 
easily interpretable form. However, SPMs are limited to capture only unimodal hazard functions1.
•Novel mechanisms of action for modern oncology treatments, such as immune checkpoint inhibitors, 
can lead to pseudo-progression and delayed response behaviors while generating sustained response 
and survival benefits in the long-run. This complex trend can manifest itself in survival plateaus and 
sophisticated hazard trends which may not be accurately captured by SPMs.
•Spline-based and non-parametric piecewise survival models often serve as flexible alternatives to 
SPMs with their ability to capture multi-modal hazard functions with multiple inflection points; 
however the choice for the number of knots and their locations used to partitioned the survival or 
hazard functions may significantly influence the accuracy of these frameworks2.
•From a practical standpoint, while number of knots are often decided by the length of follow-up in the 
data and the number of modes in the hazard trends, their locations are often decided in an 
unsystematic fashion with limited methodological guidance. 
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CONCLUSIONS
• The DP approach offers a transparent, scalable and flexible framework to piecewise survival 

modeling with optimized knot locations connecting exponentially distributed segments. 
• Unlike spline-based models, proposed approach can be augmented with additional constraints 

specifying distance between the locations of knots and number of events informing each 
segment of the piecewise model for the reliability of long-term survival projections.

• The proposed approach can adequately capture sophisticated time-varying hazard trends in a 
cohort and can be implemented on historical data to gain insights on sample size and power 
calculations in clinical trial design.
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Table 1. Base-case analysis results under the restriction that ≥20% of the events are allowed to occur after the last knot location

Treatment Endpoint Optimized Knot 
Locations 

(month)

Fraction of events

Prior to 1st knot Between the 
knots After 2nd knot

IPI OS 24 & 32 68% 11% 20%
NIVO OS 22 & 37 60% 18% 21%

NIVO+IPI OS 21 & 38 62% 15% 23%
IPI PFS 3 & 6 11% 62% 27%

NIVO PFS 8 & 15 71% 9% 20%
NIVO+IPI PFS 9 & 16 64% 14% 21%

Table 2. Sensitivity analysis results under the restriction that ≥10% of the events are allowed to occur after the last knot location

Treatment Endpoint Optimized Knot 
Locations 

(month)

Fraction of events

Prior to 1st knot Between the 
knots After 2nd knot

IPI OS 37 & 54 83% 7% 11%
NIVO OS 44 & 61 85% 4% 12%

NIVO+IPI OS 50 & 73 85% 4% 11%
IPI PFS 3 & 8 11% 72% 18%

NIVO PFS 18 & 29 83% 7% 11%
NIVO+IPI PFS 13 & 29 77% 12% 10%

•Across all arms, first and second knots were placed between months 21-24 and months 32-38, 
respectively, for OS and between months 3-9 and months 6-16, respectively, for PFS (Table 1). 

•As a benchmark, in the NIVO arm, application of splines with 2-knots on the hazard scale placed the 
knots to months 3 and 7 for PFS, and to months 9 and 24 for OS.

•In the sensitivity analysis, across all arms and endpoints, optimized locations of knots were no 
earlier than their counterparts in the primary analysis (Table 2).

•For each endpoint, optimized locations of knots and fractions of events covered in each segment 
showed high similarity between NIVO-containing arms (Table 1 and Table 2).

•In both base-case and sensitivity analyses, while the distribution of OS events across the segments in 
the IPI arm showed similarity to those in the NIVO-containing arms; the distribution of PFS events 
across the segments in the IPI arm was substantially different than those in the NIVO-containing arms.

•Compared to NIVO-containing arms, for each endpoint, optimized locations of knots were mostly 
earlier in time in the IPI arm in the base-case and sensitivity analyses. 

•Visual inspections showed that proposed DP-based approach placed the knots around the times 
when the curvature of the smoothed, cumulative hazard function displays a major change (Figure 1).

•Variation in optimized locations of knots for both endpoints with respect to treatment and to the 
threshold number of events in the tail segment show the utility of the DP-approach. 

A) B) 

C) D) 

LIMITATION
•The DP-approach assumes an exponential distribution for each segment of the piecewise model, 
however it can be generalizable to accommodate other parametric distributions which may require 
non-linear regression methods to calculate the BIC score associated with the segmented fits.

KM plots are adapted from Wolchok et al. (2024) reporting 10-year follow-up data from the Checkmate 067 study. Vertical markers represent censoring information. 
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