
MACHINE LEARNING FOR MISSING DATA IMPUTATION IN HEALTHCARE RESEARCH: 
A SYSTEMATIC REVIEW OF METHODS AND APPLICATIONS 

A literature review was conducted on MEDLINE to
identify studies published since 2020 on ML-based
imputation methods in studies conducted on RWD.
Titles and abstracts [Ti/Abs] were screened, followed by
full-text review for inclusion.

METHODOLOGY

Missing data is a critical issue and a potential source of
bias in clinical research, particularly in real-world data
(RWD) studies where loss to follow-up and incomplete
data are common. Imputing missing data is a
significant challenge as it directly affects the validity
and reliability of clinical analyses. This literature review
aimed to provide an overview of machine learning (ML)
imputation methods applied in healthcare and report
their performance.
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AFFILIATIONS

Using ML methods for missing data imputation is a promising approach to
improving the performance and robustness of predictive models in healthcare.
However, the reviewed studies highlight remaining challenges, particularly in
cases of high missingness. This warrants cautious interpretation and further
methodological refinement.

CONCLUSION
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RESULTS/FINDINGS
A total of 166 studies were initially selected through
title and abstract screening. After full-text review, 6
studies were included.
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