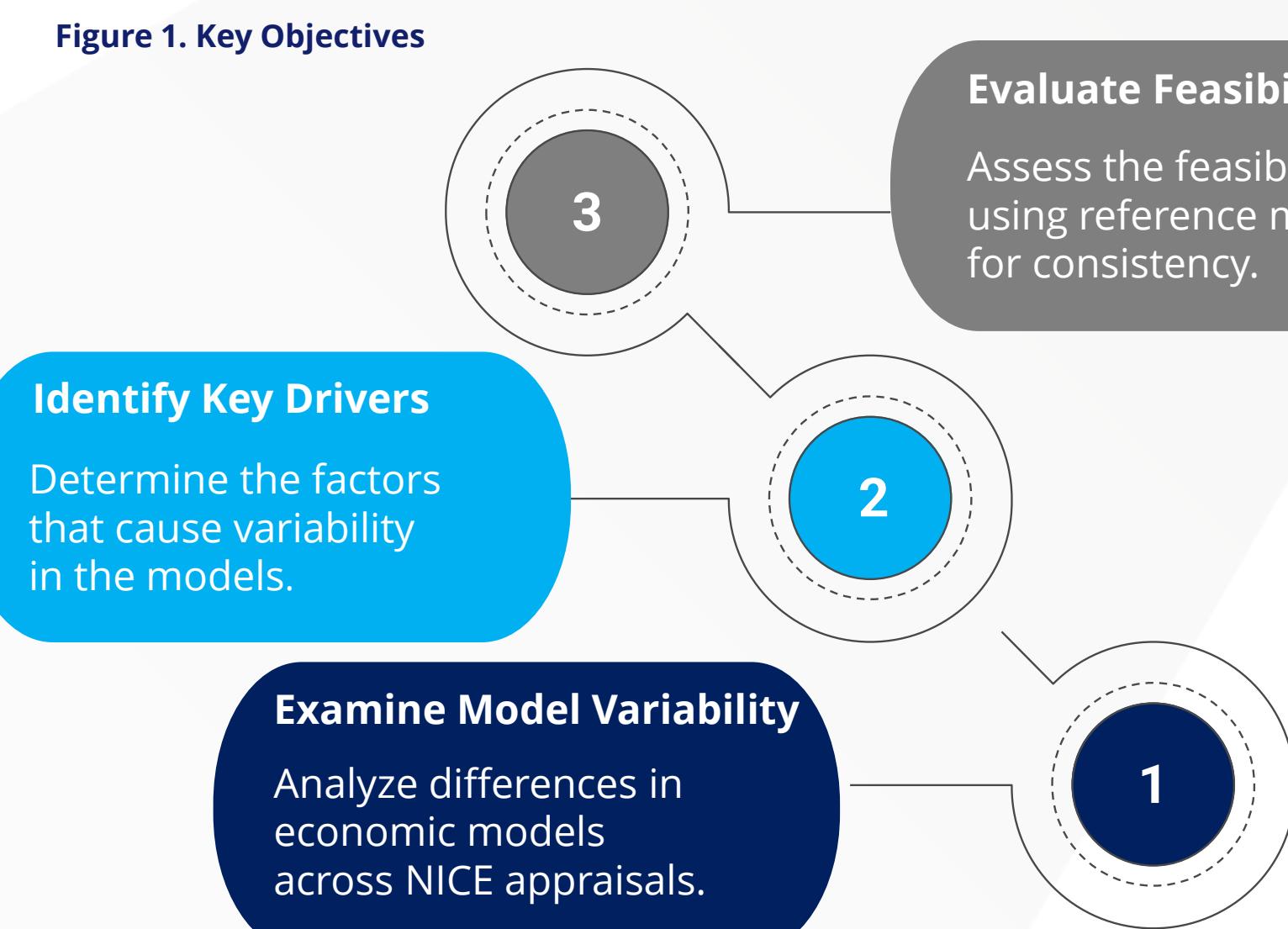


# Model Structure Variability in NICE HTAs: Evidence From Asthma and TMA Appraisals to Support the Need for Disease-Specific Reference Models

## AUTHOR

Madhusubramanian Muthukumar

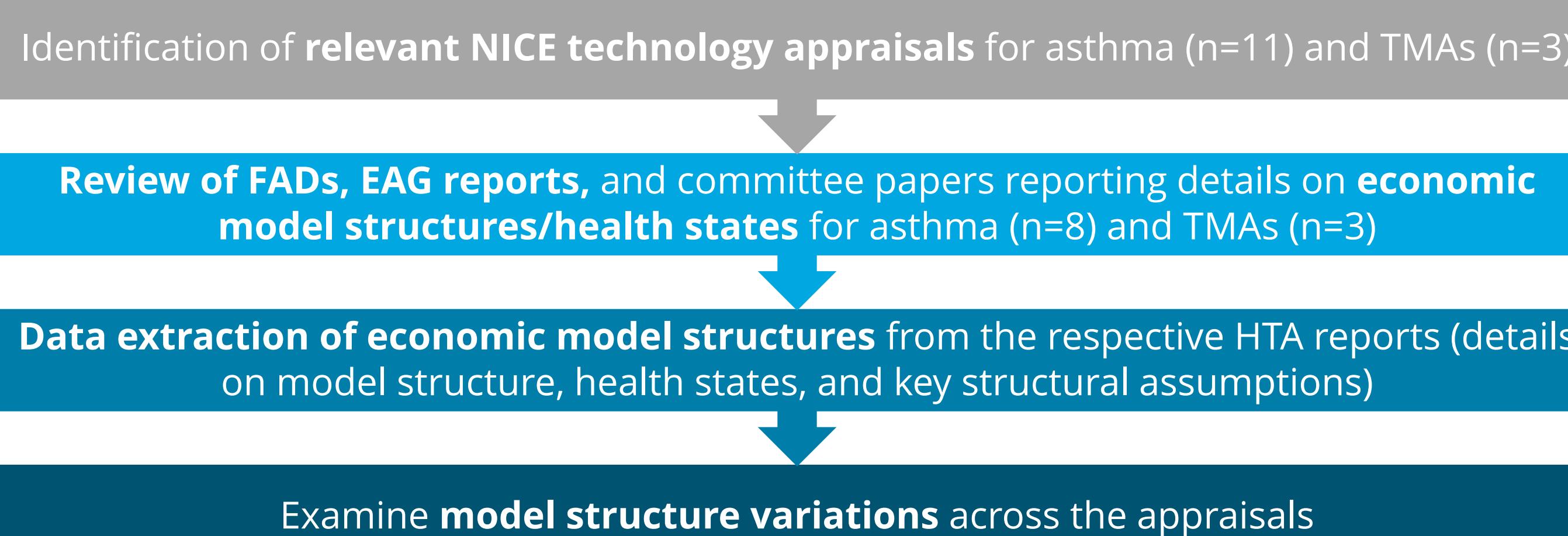
Senior Consultant, Alira Health


madhusubramanian.muthukumar@alirahealth.com

## BACKGROUND

- > **Economic models are central to HTAs**, guiding decisions on cost-effectiveness and reimbursement.
- > **Model structure variability across appraisals** reduces comparability and decision efficiency.
- > **Variability** stems majorly from **evolving evidence, disease and treatment pathway, and differing methodological assumptions**.
- > NICE appraisals provide an informative dataset for understanding how **structural variability** affects consistency across diseases areas.
- > This study **examines structural variability in NICE HTAs** for chronic asthma and rare thrombotic microangiopathies (TMAs), including Atypical Hemolytic Uremic Syndrome (aHUS) and Acquired Thrombotic Thrombocytopenic Purpura (aTTP).

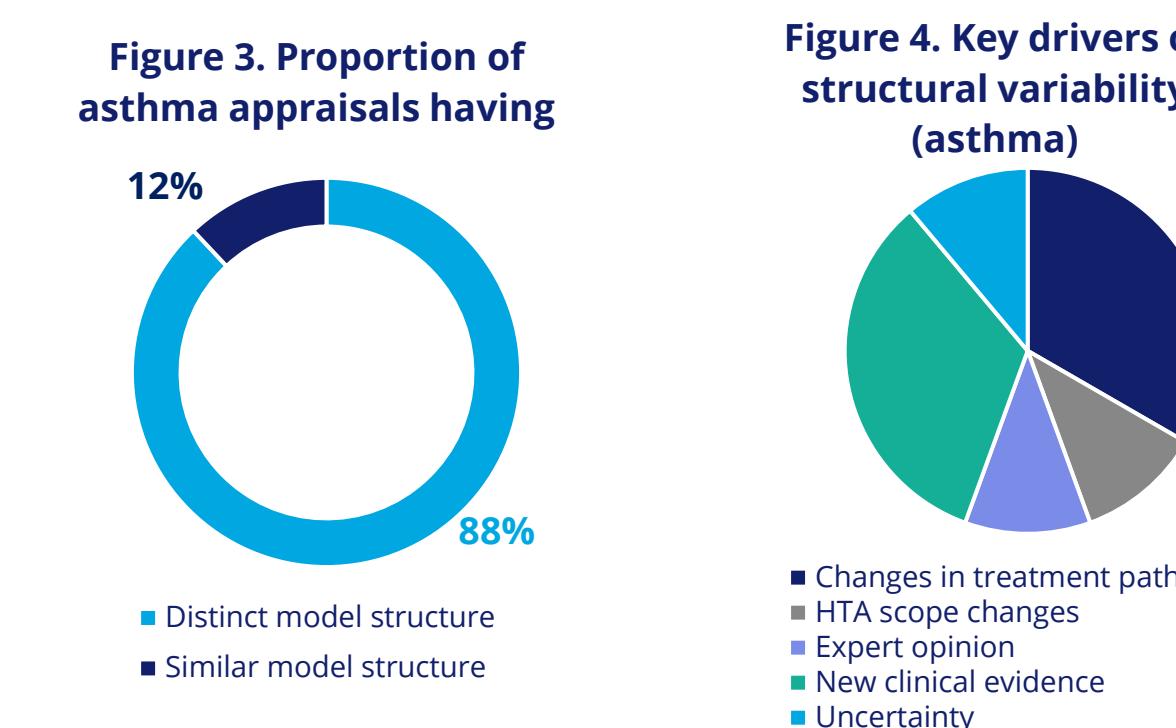
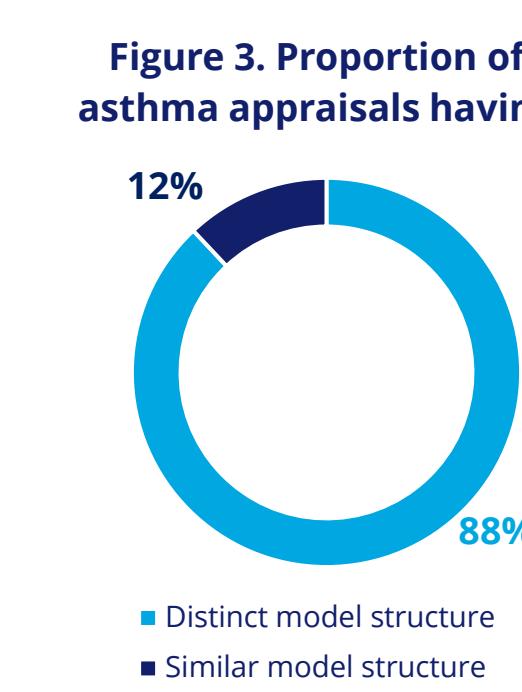
## OBJECTIVES


- > **Examine economic model structure variability** across NICE appraisals for asthma and TMAs.
- > **Identify key drivers** of model variability.
- > **Evaluate** whether such variation supports developing **reference models** for consistency.



## METHODOLOGY

- > **Targeted review:**
  - Conducted using publicly available NICE Single Technology Appraisals and Highly Specialized Technologies for asthma and TMAs.
- > **Inclusion criteria:**
  - Final Appraisal Determinations (FADs), Evidence Assessment Group (EAG) Reports, and Committee papers were reviewed.
  - Reports providing sufficient detail on model structure, reasons for revision through the appraisal process etc. were considered.
- > **Data extraction:**
  - Model structure, health states, key structural model assumptions, time horizon, comparators etc. were documented.
- > **Identification of key drivers of model variability:**
  - Rationale for key structural variations (e.g., new trial data, methodological or clinical guideline updates, expert opinion) were identified.



Figure 2. Flowchart of approach



## RESULTS

### Asthma (n=8)

- > **88% (7 of 8)** employed distinct model structures.
- > Early evaluations (e.g., inhaled corticosteroids) used simpler **Markov or decision-tree** models.
- > Later **biologic appraisals** adopted **more complex Markov structures**, with explicit modelling of **treatment response, asthma control, and exacerbation** events.
- > **Structural heterogeneity** led to **limited cross-appraisal consistency**, even within similar intervention classes.



### TMAs (n=3)

- > All three models used **distinct structural approaches** with differences in:
  - handling of **acute vs. chronic** phases,
  - inclusion of **plasma exchange**, and
  - representation of **relapse events**.
- > Model design was often informed by limited clinical data or expert opinion, reflecting **uncertainty** typical of rare diseases.
- > Model reuse was rare, even when disease context remained similar.

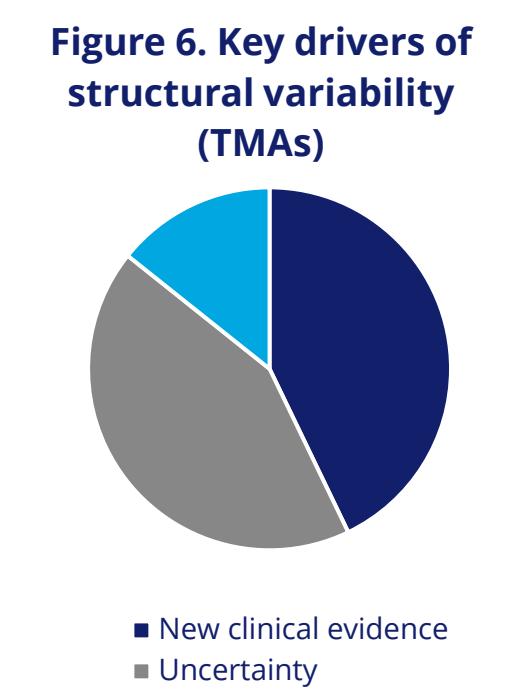
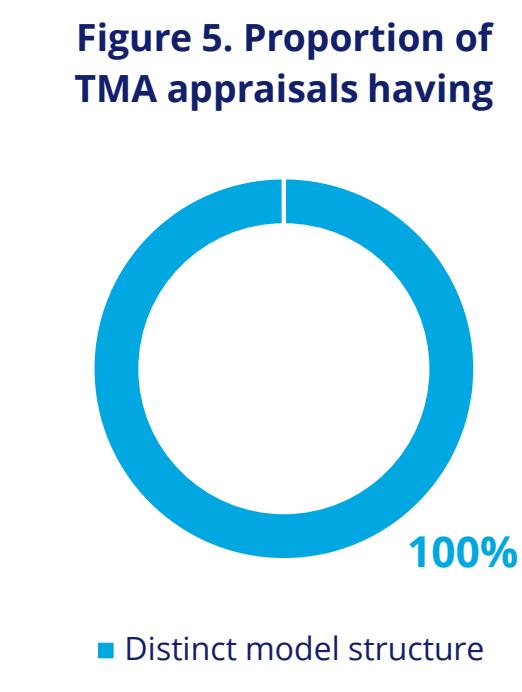




Table 1. Summary of model structures based on the NICE technology appraisals reviewed

| Appraisal                         | Publication date | Intervention        | Comparator                                                                            | Model structure                | Health states                                                                                                                                                                                                                                                      |
|-----------------------------------|------------------|---------------------|---------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Chronic: Asthma</b>            |                  |                     |                                                                                       |                                |                                                                                                                                                                                                                                                                    |
| TA131 <sup>1</sup>                | Nov 2007         | ICS/LABA            | ICS and ICS/LABA compared with each other                                             | 5 state Markov                 | Controlled asthma, GP/self-managed exacerbation, hospital exacerbation, treatment failure, step down <sup>3</sup>                                                                                                                                                  |
| TA138 <sup>2</sup>                | Dec 2008         |                     |                                                                                       |                                |                                                                                                                                                                                                                                                                    |
| TA278 <sup>4</sup>                | Apr 2013         | Add-on omalizumab   | Standard of care                                                                      | 5 state Markov                 | Day-to-day symptoms; omalizumab responders, day-to-day symptoms; Standard therapy, clinically significant non-severe exacerbations, clinically significant severe exacerbations, death: all-cause and asthma related                                               |
| TA431 <sup>5</sup>                | Jan 2017         | Add-on mepolizumab  | Standard of care                                                                      | 5 state Markov                 | Day-to-day symptoms; on treatment, day-to-day symptoms; responders, day-to-day symptoms; non-responders or standard of care, exacerbations; oral corticosteroid (OCS) burst, emergency department (ED) visit, hospitalization, death: all-cause and asthma related |
| TA479 <sup>6</sup>                | Apr 2017         | Add-on reslizumab   | Standard of care                                                                      | 5 state Markov                 | Uncontrolled asthma, controlled asthma, moderate exacerbation and severe exacerbation, death: asthma/all-cause mortality                                                                                                                                           |
| TA565 <sup>7</sup>                | Jun 2019         | Add-on benralizumab | Standard of care                                                                      | 4 state Markov                 | Uncontrolled asthma, controlled asthma, exacerbations: OCS burst, ED, hospitalization, death: all-cause and asthma related                                                                                                                                         |
| TA751 <sup>8</sup>                | Dec 2021         | Add-on dupilumab    | Add-on: benralizumab, reslizumab, mepolizumab, omalizumab, and standard of care alone | 5 state Markov                 | Uncontrolled asthma, controlled asthma, moderate exacerbation, severe exacerbation, death: asthma/all-cause mortality                                                                                                                                              |
| TA880 <sup>9</sup>                | Apr 2023         | Add-on tezepelumab  | Add-on: benralizumab, mepolizumab, omalizumab, dupilumab, and standard of care alone  | 5 state Markov                 | Controlled asthma, uncontrolled asthma, exacerbation, previously controlled asthma, exacerbation, previously uncontrolled asthma, death: asthma/all-cause mortality                                                                                                |
| <b>Rare: TMAs (aHUS and aTTP)</b> |                  |                     |                                                                                       |                                |                                                                                                                                                                                                                                                                    |
| HST1 <sup>10</sup>                | Jan 2015         | Eculizumab          | Standard of care                                                                      | 5 state Markov                 | 3 health states based on levels of kidney function, temporary state for kidney transplant, death                                                                                                                                                                   |
| TA66 <sup>11</sup>                | Dec 2020         | Caplacizumab        | Standard of care                                                                      | Decision tree + 3 state Markov | Remission, true relapse, death                                                                                                                                                                                                                                     |
| TA710 <sup>12</sup>               | Jun 2021         | Ravulizumab         | Eculizumab                                                                            | 4 state Markov                 | Initiate treatment, discontinuation, relapse and reinitiate treatment                                                                                                                                                                                              |

## DISCUSSION

- > Observed structural variability indicates **fragmented modelling practices** within and across disease areas (asthma and TMAs).
- > **Lack of model reuse** reduces methodological efficiency and increases analytic burden for each new technology.
- > For rare diseases, **evidence uncertainty and clinical expert input** often dominate model structure decisions, compounding inconsistency.
- > Establishing **reference model frameworks**, validated and adaptable within similar disease areas, could **streamline future evaluations**.
- > Such reference frameworks could improve: (i) **cross-technology comparability** (ii) **decision transparency** and (iii) **efficiency** in HTA review processes.

## LIMITATION

- > **Fewer NICE TMA appraisals** may **limit generalizability**, and reliance on public documents may omit internal rationale for model structure variations.

## CONCLUSIONS AND POLICY IMPLICATIONS

- > **Frequent model structure variation** across NICE appraisals, as evidenced with asthma and TMA appraisals, **highlight the need for greater structural alignment**.
- > **Disease-Specific reference models** may help mitigate inconsistency and inefficiency in HTAs arising due to model structural variability.
- > **Further work is warranted** to evaluate the feasibility, acceptability, and governance of reference models among key stakeholders.
- > **NICE and other HTA agencies** could establish **adaptable reference model frameworks**, encourage **model reuse** and **transparent documentation of model structure rationale**, foster **structural alignment** and enhance **reproducibility/comparability** across technologies.

## REFERENCES

1. <https://webarchive.nationalarchives.gov.uk/ukgwa/20191102113542/https://www.nice.org.uk/Guidance/TA131/>
2. <https://webarchive.nationalarchives.gov.uk/ukgwa/20191102112750/https://www.nice.org.uk/Guidance/TA138/>
3. Shepherd J, Rogers G, Anderson R, Main C, Thompson-Coon J, et al. Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta2 agonists for the treatment of chronic asthma in adults and children aged 12 years and over. *Health Technol Assess* 2008;12(19). <https://doi.org/10.3310/hta12190>
4. <https://www.nice.org.uk/guidance/ta278>
5. <https://webarchive.nationalarchives.gov.uk/ukgwa/20201006173523/https://www.nice.org.uk/guidance/ta431>
6. <https://www.nice.org.uk/guidance/ta479>
7. <https://www.nice.org.uk/guidance/ta565>
8. <https://www.nice.org.uk/guidance/ta751>
9. <https://www.nice.org.uk/guidance/ta880>
10. <https://www.nice.org.uk/guidance/ta66>
11. <https://www.nice.org.uk/guidance/ta710>
12. <https://www.nice.org.uk/guidance/ta710>