

Identifying CKD as a Key Driver of CVD Deaths

Ben Richardson,¹ Alisa Kamynina PhD,¹ Dr Jo Andrews¹

¹Carnall Farrar Ltd, 1 Lyric Square, London W6 0NB, United Kingdom

Introduction

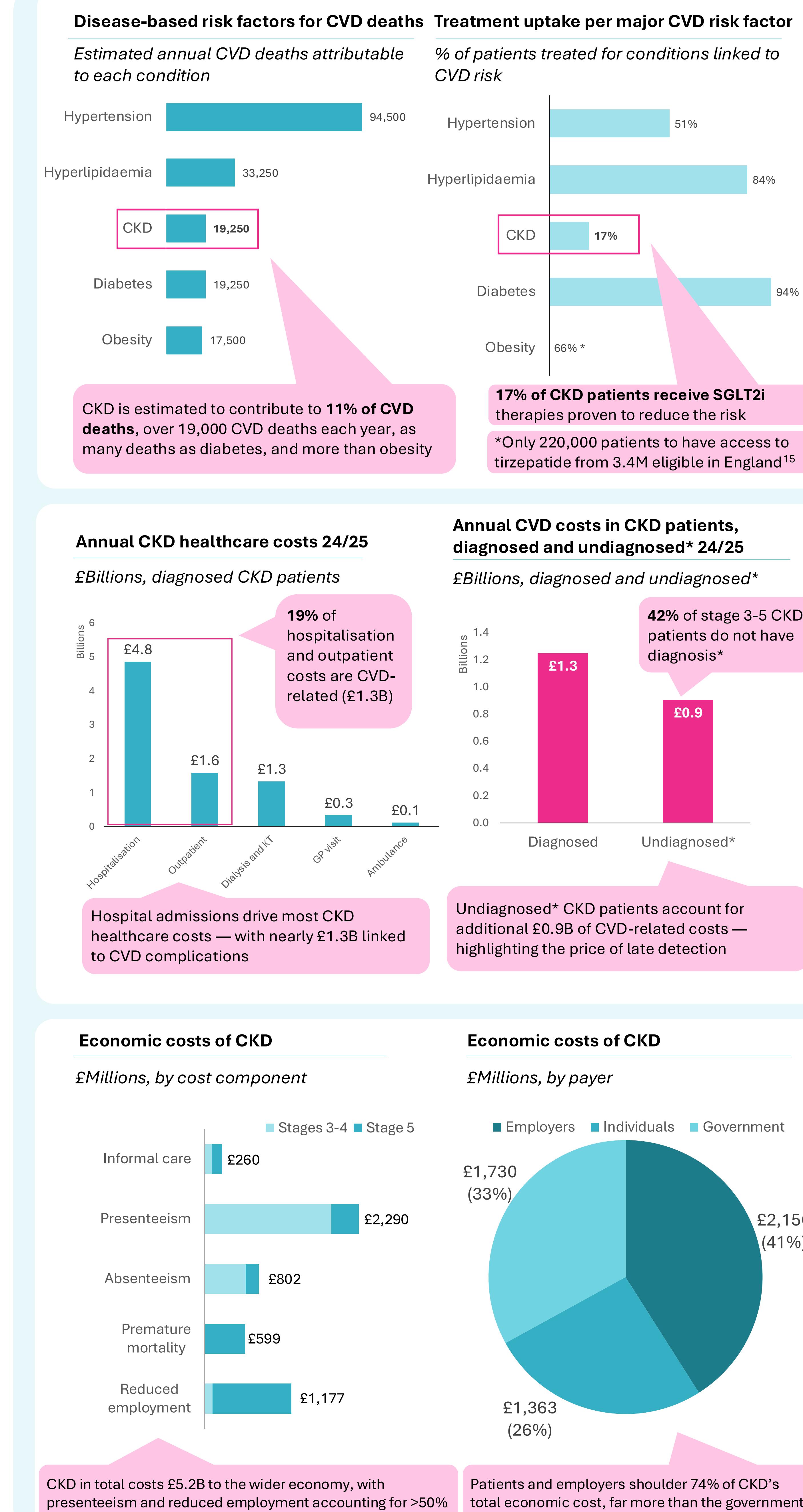
- Chronic Kidney Disease (CKD) affects over 7 million people in England¹ and is a major but often under-recognised driver of cardiovascular disease (CVD) mortality.
- CKD contributes to approximately 11% of all CVD deaths (~19,000 annually),^{2,3} placing it on par with diabetes as a cause of premature cardiovascular mortality. Despite this burden, 42% of patients with stage 3-5 CKD remain undiagnosed,^{1,4} and only 17% of eligible patients receive SGLT2 inhibitors, despite clear NICE recommendations.^{5,6}

Objectives

- Quantify the burden of CKD and CKD-related CVD on the National Health Service (NHS) and wider economy of the United Kingdom.
- Assess testing and treatment gaps, particularly in high-risk patients and those living in deprived areas and model the clinical and economic impact of earlier diagnosis and treatment with SGLT2i.
- Propose a scalable strategy for earlier intervention to reduce CKD-related mortality and health inequalities.^{7,8}

Method

- Conducted a retrospective real-world data (RWD) analysis using national NHS datasets: Hospital Episode Statistics (HES)⁹, CVDPrevent, and the Health Survey for England.^{1,10}
- Integrated economic modelling was based on NICE guidance⁶ and real-world datasets (e.g., Greater Manchester).⁴
- A scenario was modelled for early CKD identification and SGLT2i adoption, with outcomes measured across hospital admissions, dialysis uptake, CVD events, and cost of care.
- Analyses were stratified by disease stage, age, and deprivation quintile to quantify inequalities.^{4,11}


Results

- Diagnosis gap: 42% of stage 3-5 CKD patients are undiagnosed.^{1,4}
- Mortality link: CKD responsible for ~19,000 CVD deaths per year (11%).^{2,3}
- Treatment gap: Only 17% of eligible CKD patients receive SGLT2i treatment.^{5,6}
- Inequalities: Individuals in the most deprived quintile are twice as likely to develop CKD and die younger from CVD.^{4,10,11}
- Economic burden: CKD costs the NHS £8.2B and the UK economy £5.2B annually.^{9,12}
- Earlier identification and treatment of eligible patients with SGLT2 inhibitors could:
 - Reduce progression to dialysis, prevent cardiovascular events, and save an estimated £45.7M per year, offsetting the £23M treatment cost.
 - Save >6,000 lives per year through reduction in CKD-related CVD deaths.^{7,8}
 - Prevent >25,000 cardiovascular events annually, including heart failure, stroke, and myocardial infarction.^{8,9}
 - Free 300,000+ hospital bed days per year, equivalent to ~1,100 NHS beds.⁹
 - Deliver £1.1B in NHS savings annually, driven by £674M from reduced hospitalisations, £260M from avoided dialysis and transplant, and £174M from fewer CVD complications.^{9,12}

Conclusion

CKD is a preventable, high-cost driver of cardiovascular deaths and inequalities. Real-world data shows that earlier detection and targeted therapy can substantially reduce mortality, hospitalisations, and NHS expenditure.^{7,8}

Embedding CKD testing into primary-care CVD prevention pathways, with expanded use of SGLT2i therapies, aligns directly with the NHS Long Term Plan and UK Government ambitions to halve premature CVD mortality by 2030.⁸

REFERENCES

- CF analysis of Health Survey for England 2021/2022 and CVDPrevent 2024/2025. <https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2022-part-2>.
- Eur Cardiol. 2023 Aug 23;18:e51. doi: 10.15420/ecr.2022.64.
- NICE. *What is the impact of CVD?* <https://cks.nice.org.uk/topics/cvd-risk-assessment-management/background-information/burden-of-cvd/>, accessed Mar 2025.
- CF analysis of Greater Manchester real-world dataset (on file), Mar 2025.
- ClinicalMedicine. 2024 Jan 19;68:102426. doi: 10.1016/j.eclim.2024.202426.
- NICE. *Chronic kidney disease: assessment and management*. NICE guideline NG203, Apr 2021. <https://www.nice.org.uk/guidance/ng203/chapter/Recommendations>, accessed Mar 2025.
- TheyWorkForYou. Cardiovascular Diseases: Health Services. <https://www.theyworkforyou.com/wrants/?id=2025-02-04-28703.h&s=speaker%3A26434>, accessed Mar 2025.
- Diabetes Obes Metab. 2024 Oct; 26 Suppl 5:25-34. doi: 10.1111/dom.15765.
- CF analysis of Hospital Episode Statistics data 2024/2025 (on file), accessed Mar 2025.
- Health Survey for England 2021-2022. <https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2022-part-2>, accessed Mar 2025.
- CVDPrevent Outcomes. <https://data.cvdprevent.nhs.uk/outcomes>, accessed Dec 2024.
- CF analysis of Deloitte. *Changing the chronic kidney disease landscape*. 2023. <https://www.deloitte.com/au/en/services/economics/analysis/changing-chronic-kidney-disease-landscape.html>, accessed Mar 2025.
- Zghebi, S.S., Steinke, D.T., Rutter, M.K., et al. (2020) 'Eleven-year multimorbidity burden among 637,255 people with and without type 2 diabetes: a population-based study using primary care and linked hospitalisation data', BMJ Open,

Contact Details

Carnall Farrar

T: +44 (0)20 3770 7535 E: LifeSciences@carnallfarrar.com

Ben Richardson (Corresponding Author)

T: +44 (0)7825 029368 E: Ben.Richardson@carnallfarrar.com