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OBJECTIVES

In small-sample settings or when data are skewed — common situations in health
economics — the assumptions required for parametric methods to perform well are
often violated. As a result, confidence intervals derived from these methods may be
iInaccurate and exhibit poor coverage of the parameter of interest.

This study aims to explore, through a simulation, non-parametric bootstrap
techniques as alternatives for confidence interval estimation, given small samples,
In the context of Health Technology Assessment (HTA), and highlight the limitations
of parametric approaches.

METHODS

A Monte Carlo simulation was conducted to evaluate three approaches for
estimating the pooled log odds ratio (logOR) and corresponding confidence intervals
(with 95% confidence) in rare-event meta-analyses: 1) a Generalized Linear Mixed
Model (GLMM) with profile-likelihood confidence intervals; 2) GLMM with non-
parametric bootstrap — Percentile and Bias Corrected accelerated (BCa);, 3)
Bayesian random-effects model with weak informative priors — N(0,2.5) for treatment
effect and Exp(9) for between-study standard deviation (SD).

Classical parametric approaches (e.g., Wald-based confidence intervals and
Mantel-Haenszel pooling) were not included, as they have been largely abandoned
iIn current HTA practice due to their poor performance in sparse data and small-
sample contexts [1].

Synthetic datasets were generated to mimic binary rare-event outcomes. For each
simulated meta-analysis, k studies were created, each with binomially distributed
event counts per arm:

Yci ~ Binom(ncl-, pCi)a Yri ~ Binom(nTl-, pTi)

with

pe; = logit~logit(ps) + 8], 6 ~N(0,7) and pg; = pe; * Relative risk
Key design parameters were varied following prior simulation frameworks [2], with
the number of studies (k) set to 5, 10, and 30, control arm event probabilities (p.) of
0.01 and 0.05, heterogeneity (7) values of 0.5 and 1, and a fixed relative risk of 0.5.

Each scenario was replicated 100 times, and 2000 bootstrap samples were drawn
for each confidence interval.

Performance was evaluated through five different metrics by their average results:
Coverage probability; Width; Bias; Power; Model estimability.

RESULTS

For low event probability (1%), bootstrap-based GLMMs showed lower coverage
(~80%) than profile-likelihood and Bayesian approaches, which were close to the
nominal 95% across all settings (Figure 1).
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Figure 1. Coverage probability average results.
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RESULTS (cont.)

For higher event probability (5%) and several studies (k = 30), bootstrap methods
also achieved coverage close to 95% (Figure 1).

For a small number of studies (k = 5), bootstrap methods yielded confidence
intervals two to four times wider than those from profile-likelihood and Bayesian
approaches, regardless of event probability or heterogeneity (Figure 2).

However, with a moderate number of studies (k = 10), the interval widths became
comparable across methods (Figure 2).
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Figure 2. Width average results.

A composite performance score was developed to identify the best-performing
method. Each metric was normalized (min-max) and weighted: coverage and
interval width (0.4 each); bias and power (0.1 each); estimability was excluded as all
models converged.

For low event probability in control arm (1%), bootstrap methods performed 1.25 — 2
times worse than the other approaches, regardless of the number of studies.
However, at a 5% event probability and with 30 studies, their performance became
comparable (scores = 0.8), as shown in Figure 3.
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Figure 3. Score average results.

= CONCLUSIONS

Bootstrap methods are a viable alternative to classical parametric

approaches to calculate confidence intervals in meta-analyses. They
perform has good as the standard methods in settings with a great number
of studies (~30) and a moderate event incidence (~5%). However, in
settings with fewer studies or lower event incidence, GLMM with profile
likelihood and Bayesian models provide a more reliable inference.
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