

Evolution of High-Efficacy Therapies for Relapsing Multiple Sclerosis

Does Innovation Meet Patient Preferences?

Florian Kuhlmei, PhD^{1*}, Michael E. Arzt, PhD², Marc Bill, MSc¹, Lara Diem, MD³, Barbara Fischer, PhD¹, Robert Hoepner, PD⁴, Pascal A. Rabatscher, PhD²

¹ Polynomics AG, Olten, Switzerland, ² Novartis Pharma Schweiz AG, Rotkreuz, Switzerland, ³ Neurocenter, Cantonal Hospital of Lucerne, Luzern, Switzerland, ⁴ Department of Neurology, University Hospital Bern (Inselspital), Bern, Switzerland

* Presenting and corresponding author (florian.kuhlmei@polynomics.ch)

Objectives

Several high-efficacy therapies (HET) for relapsing multiple sclerosis (MS) are used as treatment options. These therapies differ in their administration profiles. The objective of this study is twofold:

- To elicit preferences for administration characteristics of parenteral HET.
- To evaluate whether recent therapeutic innovations meet patient preferences.

Alongside we compare preferences for administration characteristics for people living with MS and people living without MS and check for differences in age, sex, language and other sociodemographics.

Methods

A. Preference elicitation

We conducted a discrete choice experiment (DCE) in Switzerland with 66 people living with multiple sclerosis (PWMS), as well as 985 people living without MS (PWOMS), approximating the perspective of newly diagnosed PWMS without prior treatment experience.

The survey was conducted in March 2025. The PWMS-sample was primarily recruited through a Swiss patient panel, while the PWOMS sample was drawn from an online panel representative of the Swiss population aged 18 and above in German- or French-speaking regions. By stratifying for age and gender (according to data in Iaquinto, 2024) the sample was made representative of the Swiss MS population along these two dimensions.

Preferences were elicited for five central aspects of HET-administration. These are displayed in Figure 1, together with the corresponding attribute levels.

Figure 1. Attributes (header) and corresponding levels (bullets) used in the DCE

Duration of administration	Frequency of administration	Place of administration	Route of administration	Premedication
• 4 hours (baseline)	• Monthly (baseline)	• Outpatient hospital (baseline)	• Infusion (i.v.) (baseline)	• Necessary (baseline)
• 2 hours	• Every 6 months	• Neurologist's practice	• Subcutaneous (s.c.) syringe	• Not required
• 1 hour		• At home	• Subcutaneous (s.c.) pen	
• 5 min				

Each respondent made ten decisions between two unlabeled therapy options. Figure 2 shows an example of a choice set.

Figure 2. Example of a choice set

Attributes	Treatment A		Treatment B	
	Route of administration	Place of administration	Duration of administration	Frequency of duration
Route of administration	Infusion	Infusion		
Place of administration	Outpatient hospital	Neurologist's practice		
Duration of administration	4 hours		2 hours	
Frequency of duration	Every 6 months		Monthly	
Premedication	Necessary		Not required	
	<input type="checkbox"/> I choose Treatment A		<input type="checkbox"/> I choose Treatment B	

The statistical analysis builds on the Random Utility Model (RUM) of discrete choice (McFadden, 2001). Individuals selected the alternative that provides the highest latent utility, where utility consists of a systematic component (explained by observable attributes) and a random error term.

To empirically implement this framework, we estimated a conditional logit model with a binary choice indicator as the dependent variable and the attributes as independent categorical variables. Respondent-level covariates were not included in the PWMS sample due to the limited sample size, and in the PWOMS sample because representativeness was already achieved.

The estimation yields attribute-specific utility weights and allows the direct prediction of choice probabilities for alternative administration profiles defined by the attribute levels included in the survey. A critical assumption is that these levels cover the full range of plausible and relevant values.

B. Evolution of administration profiles

To trace the evolution of administration modalities for HET in relapsing MS, we defined a sequence of five administration profiles that reflect clinically relevant innovations over time. Each profile was designed by combining attribute levels from the DCE to approximate the administration characteristics of marketed therapies. The corresponding administration profiles were not part of the DCE but constructed and used for post estimation predictions.

C. Simulation of choice probabilities

Based on the estimated RUM utility weights from the DCE (Part A), we simulated preference-based choice probabilities for the administration profiles that mimic the evolution of administration modalities for HET in relapsing MS (Part B).

We conducted stepwise simulations. Starting from a baseline profile, we introduced four additional profiles one by one in the order derived in Part B and predicted market shares at each step. In a final scenario, all five profiles were offered simultaneously to assess their relative attractiveness in a competitive choice setting.

D. Sensitivity analysis

Several robustness checks support the stability of our findings.

Considering people living without MS, approximating the perspective of newly diagnosed PWMS

Compared to PWMS, PWOMS have stronger preferences for administration via pen and at home (see Table 3 compared to Table 2). Accordingly, Treatment D (pen at home) turns out to be particularly dominant: its choice probability is 80%, if all five options are available (vs. 51% for PWMS). This reflects the stronger preference of PWOMS for "good" attribute levels from Figure 1.

Table 3. Sensitivity: Decision probabilities of different HET-landscapes for PWOMS

Scenario	(1)		(2)		(3)		(4)	
	Share	95%-CI	Share	95%-CI	Share	95%-CI	Share	95%-CI
Treatment A	42%	[0.40; 0.44]	17%	[0.16; 0.19]	1%	[0.01; 0.02]	1%	[0.01; 0.02]
Treatment B	58%	[0.56; 0.61]	24%	[0.22; 0.26]	2%	[0.01; 0.02]	2%	[0.01; 0.02]
Treatment C			59%	[0.56; 0.62]	5%	[0.03; 0.06]	4%	[0.03; 0.05]
Treatment D					92%	[0.92; 0.94]	80%	[0.77; 0.84]
Treatment E							13%	[0.11; 0.15]
Sum	100%		100%		100%		100%	

Allowing preference heterogeneity

Estimations using a mixed logit model, which allows heterogeneity in route and place of administration, yielded results consistent with the conditional logit baseline. Other specifications were tested, but the models did not converge: All parameters randomly and other selections of attributes (duration and frequency, both as categorical and continuous variables).

Challenging treatment with pen at home

Relocating the six-monthly syringe injection (Treatment E) from the neurologist's practice to home substantially increased its predicted choice probability to 46% compared to 25% reported in Table 2. Pen at home (Treatment D) remains attractive with a predicted choice probability of 37%, while the "older" treatments combined receive less than 20%.

Validating preference weights via ranking

After the DCE we asked participants to rank treatment attributes from most to least important (see Table 4). This attribute ranking confirmed many of the DCE results, but the duration of administration ranked lower than in the DCE. Premedication was consistently rated as least relevant among the DCE-attributes. The distance between the average ranks for the route, place and duration of administration is rather small, indicating little variation among these factors.

The ranking confirmed efficacy and safety as the most important attributes overall. These were held constant in the experiment, as did patient costs for treatment, which received the lowest rank.

Table 4. Sensitivity: Validation of attribute weights with ranking (after choices)

DCE-attributes	Average rank (most to least important: 1 to 8)		Weights from DCE (Relative in %)	
	Share	95%-CI	Share	95%-CI
Efficacy of treatment	1.8			
Safety of treatment	3.6			
Frequency of administration	3.9		25	2
Route of administration	4.7		13	4
Place of administration	5		24	3
Duration of administration	5.2		28	1
Premedication required	5.6		10	5
Patient costs for treatment	6.2			

C. Simulation of choice probabilities

Simulations of preference-based market shares illustrate how conditional choice probabilities change as new administration profiles are introduced. Table 2 shows the results for PWMS.

We start with a high-efficacy therapy option that requires a monthly i.v. infusion lasting 1 hour without premedication (Treatment A in Table 1) and consider four scenarios:

- (1) We add a new treatment option (Treatment B) that decreases i.v. infusion frequency from monthly to six-monthly (at the cost of need for premedication and increased infusion time). We predict a choice probability of Treatment B of 55%, implying that the market share of Treatment A drops to 45% (first column in Table 2).
- (2) When we additionally offer Treatment C (monthly s.c. syringe from healthcare professionals, requiring only 5 minutes for administration), this treatment is chosen in 49% of cases, implying smaller shares for established i.v.-based treatment options A and B (second column in Table 2).
- (3) Adding a pen for self-administration at home (Treatment D) is the preferred choice for 2 out of 3 PWMS (predicted choice probability is 67%). Infusion-based treatments (A and B) are only preferred in 17% of cases, and Treatment C drops to 16% (third column in Table 2).
- (4) When competing against Treatments A to D, Treatment E (a six-monthly syringe with premedication) attracts 25% (last column in Table 2).

With all treatments available, the treatment with pen at home remains the most-preferred option (51%), followed by syringe injections (37%) and infusions (12%).

Table 2. Decision probabilities of different HET-landscapes for PWMS

Scenario	(1)		(2)		(3)		(4)	
	Share	95%-CI	Share	95%-CI	Share	95%-CI	Share	95%-CI
Treatment A	45%	[0.35; 0.55]	23%	[0.18; 0.29]	8%	[0.02; 0.13]	6%	[0.02; 0.07]
Treatment B	55%	[0.45; 0.65]	28%	[0.20; 0.36]	9%	[0.02; 0.16]	7%	[0.02; 0.11]
Treatment C			49%	[0.40; 0.58]	16%	[0.07; 0.24]	12%	[0.06; 0.17]
Treatment D					68%	[0.48; 0.88]	51%	[0.31; 0.70]
Treatment E							25%	[0.16; 0.34]
Sum	100%		100%		100%		100%	

Discussion

Our results align with recent evidence that convenience of administration shapes patient choices. Across immune-related diseases, patients tend to prefer s.c. over i.v. administration and – where feasible – home over clinic (Bril et al., 2024; Overton et al., 2021). MS- and HET-specific studies reported preferences for s.c. over i.v. treatment mainly due to less clinic time and greater comfort for patients (Gold et al., 2024; Newsome et al., 2024), and documented time savings for healthcare professionals (Filippi et al., 2024).

These patterns are consistent with the results from the Swiss DCE, where duration, frequency, and place dominated route and premedication, and where pen-based self-administration at home attained the highest predicted choice probability – even when competing with less frequent infusions – while infusion options lost share once s.c. alternatives were available.

Prior studies also emphasize heterogeneity in preferences for MS-therapy and frequently report that efficacy and safety can dominate decisions; our design intentionally held these attributes constant to isolate administration trade-offs and thus complements (rather than replaces) those findings (Visser et al., 2020; Bottomley et al., 2017; Arroyo et al., 2017; Poulos et al., 2020; Jonker et al., 2020). The comparatively milder aversion to longer administrations among PWMS than among the general population in our data is consistent with the status quo bias (Saposnik et al., 2022; Jonker et al., 2020), and the literature also notes a persistent minority who prefer clinic based i.v. (dislike of self injection, perceived safety under supervision) (Overton et al., 2021; Bril et al., 2024; Tatlock et al., 2023).

Taken together, innovations in administration appear to expand the choice set for patients and can align with early HET-strategies, but shared decision making and transparent education remain essential to match options to individual preferences (Oreja-Guevara et al., 2024; Selmaj et al., 2024; Singer et al., 2024; Martin et al., 2024).