

Efficacy and Safety of Modern Biologics Compared to Conventional Therapies in Aquaporin-4 positive Neuromyelitis Optica Spectrum Disorder

A Fully AI Automated Targeted Literature Review

Goel A¹, Singh B², Shaik HT¹, Agarwal AK¹, Kishore A¹, Chawla A², Chawla R¹

¹HEOR, AccuScript Consultancy Pvt. Ltd, Ludhiana, India, ²AI Research and Development, AccuScript Consultancy Pvt. Ltd, Ludhiana, India

MSR
82

INTRODUCTION

The exponential growth of biomedical literature has made traditional literature reviews increasingly slow and resource-intensive, often requiring 2-4 weeks or more to complete. SYMPRO-AI, our in-house AI based SLR suite, overcomes this challenge by conducting a fully automated, end-to-end Targeted Literature Review (TLR) covering every step from searches and screening to full-text review and report generation. Beyond automation, SYMPRO-AI delivers comparative insights, summarising key findings and clinical implications at a faster pace that allows more intensive reviews and data analysis.

RESEARCH QUESTION

To perform a fully automated TLR using artificial intelligence (AI) to compare the effectiveness of modern biologics with conventional therapies in patients with Aquaporin-4 positive Neuromyelitis Optica Spectrum Disorder (NMOSD).

METHODS

- SYMPRO-AI was employed to conduct a fully automated, end-to-end TLR based on predefined study objectives and protocol.
- SYMPRO-AI developed and executed a comprehensive PubMed search strategy specific to the study goals.
- The system performed screening of the hits and executed a generative analysis on the data extracted from the included studies. Human inputs were limited to push 'Start' buttons at each step.
- Searches as well as screening of citations were performed manually in parallel to compare SYMPRO-AI versus human efficiency for inclusion & exclusion.

RESULTS

- The SYMPRO-AI driven PubMed searches identified 1,721 citations. The search results were similar when performed manually.
- SYMPRO-AI identified 130 articles during title/abstract screening, while manual screening identified 123. After full-text review, both methods included the same 33 articles.
- Performance metrics — accuracy, sensitivity, and specificity — were calculated based on the observed results (Table 1, Fig. 1).

Table 1: Efficacy of SYMPRO-AI vs. manual (human) for first-pass screening

	AI Exclude	AI Include	Total
Manual Exclude	1,568 (98.6%)	30 (23.1%)	1,598
Manual Include	23 (1.4%)	100 (76.9%)	123
Total	1,591	130	1,721

SYMPRO-AI decision

■ TRUE ■ FALSE

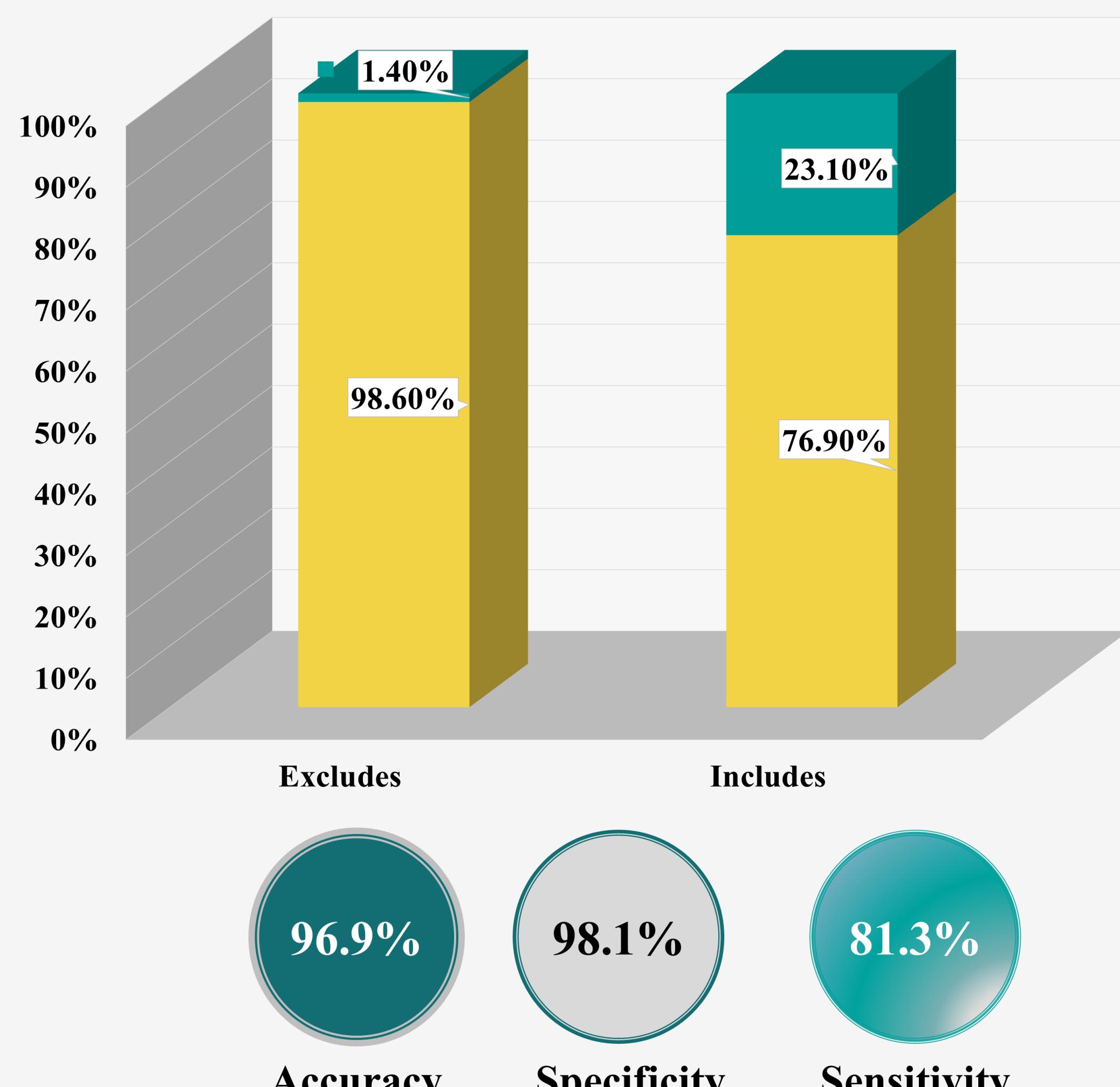


Figure 1. Comparison between manual and AI screening and performance metrics of SYMPRO-AI.

➤ All the studies finally included in the TLR report had been included by SYMPRO-AI at the Title/Abstract screening.

➤ **Speed:** The screening step, report writing and the overall TLR process was faster compared to the manual approach (Fig. 2).

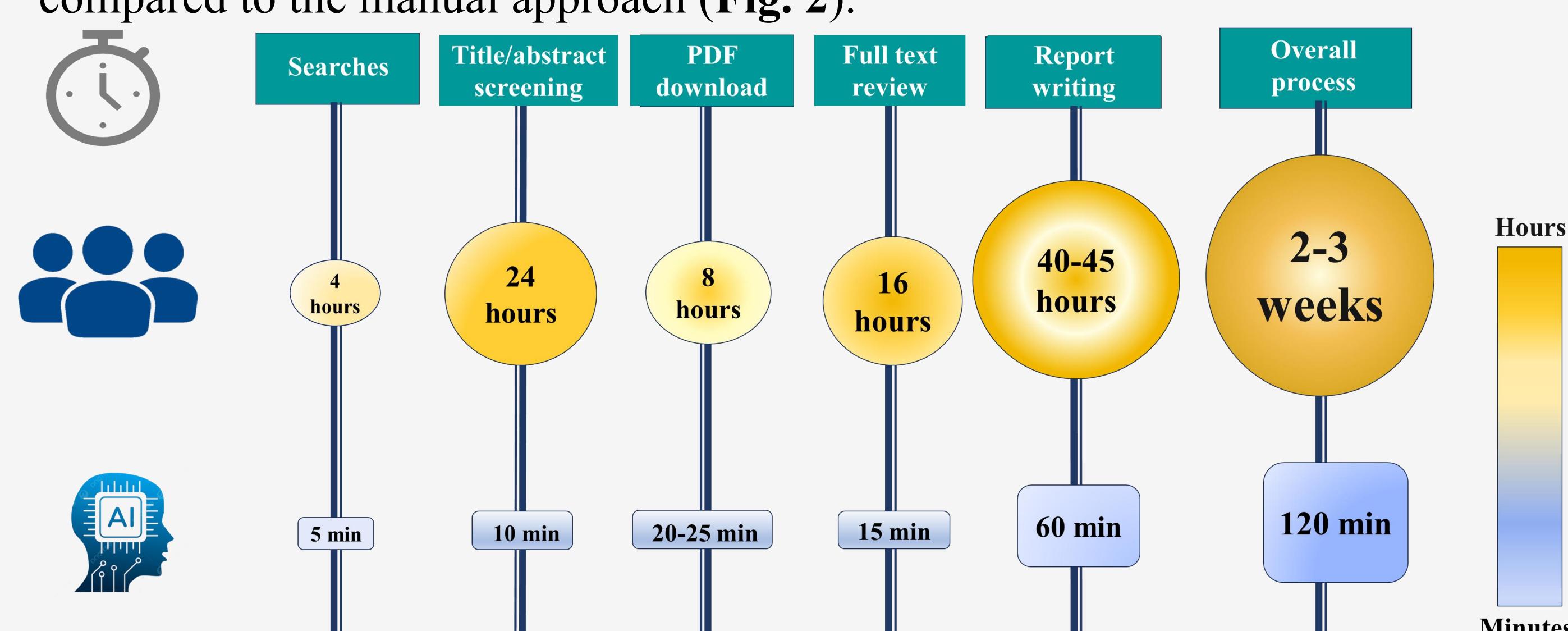


Figure 2. Time expedited across different stages of TLR.

➤ **Key Comparative Efficacy Insights:** A clear efficacy hierarchy emerged, with eculizumab (94%) demonstrating the highest effectiveness-relapse rate reduction, followed by satralizumab (74-79%), rituximab (74%), inebilizumab (73%), mycophenolate (65%), and azathioprine (58%). Satralizumab maintained 71-73% relapse-free rates at 192 weeks, while inebilizumab achieved an 83% attack-free probability at 4 years (Fig. 3).

Relapse rate reduction

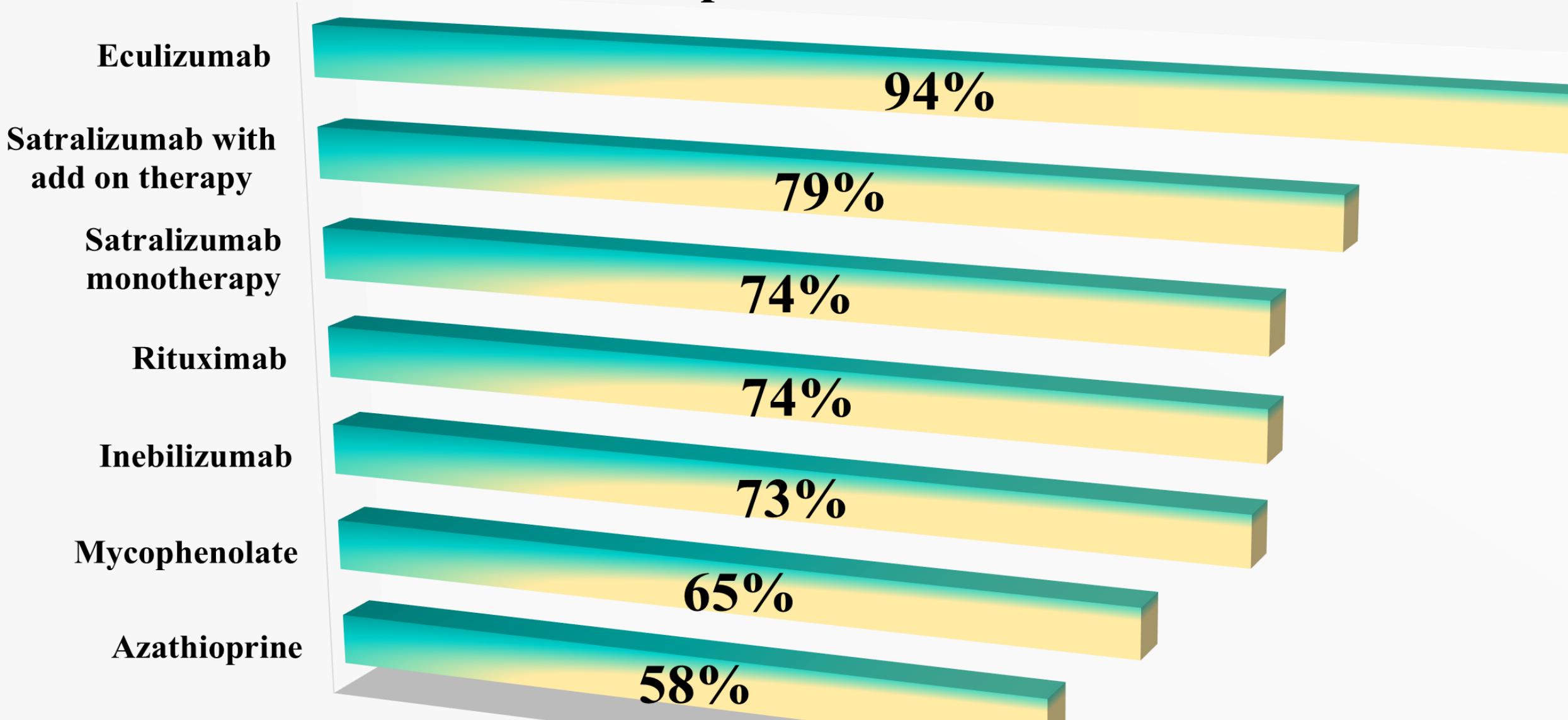


Figure 3. Relapse rate reduction of different treatment regimens.

➤ **Safety analysis:** SYMPRO-AI was able to compare different FDA approved biologics against the conventional immunosuppressants, with the former demonstrating better safety profile (Table 2).

Table 2. SYMPRO-AI safety analysis of biologics versus immunosuppressants

Drug	Eculizumab (C5 inhibitor)	Satralizumab (IL-6 receptor blocker)	Inebilizumab (CD19 depleting)	Rituximab (CD 20 depleting)	Mycophenolate mofetil (Immunosuppressant)	Azathioprine*
Serious AEs	8.6-30.7 per 100 PYs [7,9]	• Satralizumab monoTx: 22% (10.9 per 100 PYs) • Satralizumab ± IST: 28% (10.4 per 100 PYs) [6]	9.3% [5]	20%	TEAEs: 43% (39/90) [10]	13.63% [8]
Serious infections	Upto 10.2 per 100 PYs [4,9]	• Satralizumab monoTx: 8.8% (3.2 per 100 PYs) • Satralizumab ± IST: 10.7% (2.8 per 100 PYs) [6]	Up to 2.7% [5]	15.3% [3]	• Severe Pneumonia: 3 patients • Varicella-zoster virus infection: 5 patients [10]	Tuberculosis: 1.1 [8]
Deaths	• Rare in CTs (Only 1 death) • 8% in RWE [2]	Rare (only one in post marketing surveillance) [6]	0 [5]	1.8-2.7% [1,3]	Death due to ARDS: 1 [10]	1 death [7]

Abbreviations: AEs, Adverse events; ARDS, Acute respiratory distress syndrome; CTs, Clinical trials; IL, Interleukin; IST, Immunosuppressive therapy; monoTx, Monotherapy; PYs, Patient years; RWE, Real world evidence; TEAEs, Treatment emergent adverse events.

*Includes Immunosuppressive agent; purine metabolism antagonist

FDA-approved monoclonal antibodies demonstrate substantially lower discontinuation rates (up to 4%) compared to conventional immunosuppressants (2-14.8%).[1,6,8]

CONCLUSIONS

From Search to Insight: Power of SYMPRO-AI

- ✓ Faster end-to-end TLR development
- ✓ Enhanced accuracy
- ✓ Generative Insights: Automates evidence synthesis, generates comparative analysis, and highlights clinical implications

Limitations: The TLR was designed to test full automation by SYMPRO-AI and searches were limited to the free PubMed API. Other databases like Embase will capture additional literature.

- The AI driven decisions are subject to extensive human review.
- Larger studies are required to fine-tune the AI capabilities.

REFERENCES

1. Kim et al. Evaluating rituximab failure rates in neuromyelitis optica spectrum disorder: a nationwide real-world study from South Korea. *J Clin Neurol.* 2025;21(2):131-136.
2. Ringelstein et al. Eculizumab use in neuromyelitis optica spectrum disorders: routine clinical care data from a European cohort. *Neurology.* 2024;103:e209888.
3. Barreras et al. Effectiveness and safety of rituximab in AQP4-IgG+ NMOSD and MOGAD: long-term observational study. *Neurology.* 2022;99(22):e2504-e2514.
4. Pittock et al.; PREVENT Study Group. Long-term efficacy and safety of eculizumab monotherapy in aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder: post hoc analysis of the PREVENT trial and its open-label extension. *Mult Scler J.* 2022;28(3):480-486.
5. Rensel et al. Long-term efficacy and safety of inebilizumab in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder: 4-year open-label extension of the N-MOMENT trial. *Mult Scler J.* 2022;28(6):925-932.
6. Yamamura et al. Long-term safety of satralizumab in neuromyelitis optica spectrum disorder (NMOSD) from SAKuraSky and SAKuraStar. *Mult Scler Relat Disord.* 2022;66:104025.
7. Palace et al. Benefits of eculizumab in AQP4+ neuromyelitis optica spectrum disorder: subgroup analyses of the randomized controlled phase 3 PREVENT trial. *Mult Scler Relat Disord.* 2021;52:102641.
8. Singh et al. Clinical characteristics, treatment response, and disability outcomes in Indian patients with NMOSD: an ambispective cohort study. *Ann Indian Acad Neurol.* 2021;24(1):10-18.
9. Wingerchuk et al. Long-term safety and efficacy of eculizumab in aquaporin-4 IgG-positive NMOSD. *Ann Neurol.* 2021;89(6):1088-1098.
10. Huang et al. Low-dose mycophenolate mofetil for treatment of neuromyelitis optica spectrum disorders: a prospective multicenter study in South China. *Frontiers in immunology.* 2018 Sep 11:9206.