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Figure 1 ROC curve and Precision-Recall curve

Introduction

ROC curve
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Primary Endpoint Pneumonia (PEP) is a WHO-defined radiological measure used in vaccine studies for its high specificity for — o
bacterial pneumonia, particularly Streptococcus pneumoniae. Retrospective studies using ICD codes for all-cause pneumonia are .
less time consuming and have high sensitivity for bacterial pneumonia but lack specificity. Although the WHO method has proven
valuable in multiple studies, human interpretation remains time-consuming and subject to inter-reader disagreement, 0.8 -

often necessitating adjudication panels.
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Advances in deep learning have made automated chest X-ray (CXR) interpretation practical. Chen et al.! developed a
transfer-learning—based model to classify pediatric CXRs using WHO criteria for PEP, demonstrating strong performance on
both internal and independent test sets. Subsequent validation with a Hong Kong CXR dataset confirmed the model’s real-world
applicability [2].This study aims to further validate that model by assessing its ability to identify PEP in pediatric CXRs in Israel,
thereby evaluating generalizability across healthcare systems and populations.
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This cross-sectional validation study utilized a deep learning model designed to classify CXRs for PEP based on WHO criteria.
Pediatric CXR images were sourced from Maccabi healthcare system, with classifications determined by three board-certified

radiologist. The dataset comprised 537 anonymized CXR images selected from children <5 years of age in Israel (2004-2018).
The same dataset was then subjected to prediction by the deep learning model, which was pre-trained on adult CXR datasets 10 =
and fine-tuned on pediatric data. The level of agreement among each rater and between each rater and the model was evaluated
as well.

Precision-Recall curve

In a secondary analysis, we evaluated the effect of an autosegmentation algorithm on model performance, since 0.8 -
autosegmentation previously improved results in our validation work in Hong Kong. The autosegmentation algorithm used a
U-Net—inspired convolutional neural network. It retains the U-shaped encoder-decoder segmentation design of the original U-Net
but reduces feature dimensionality. The model first segments the pulmonary region and computes a bounding rectangle from

the mask (with an added margin) to crop the image=.
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Statistical analysis
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The deep-learning model’s classification performance was compared with the radiologists’ consensus (the gold standard)

using standard metrics: accuracy, F1 score, precision, sensitivity, specificity, area under the receiver operating characteristic

curve(AUROC), and the area under the precision and recall curve (AUPRC). Performance was evaluated on the full dataset 0.2 |
and within subgroups defined by age, sex, inter-observer agreement, ICU admission, and mortality. Inter-observer agreement

was measured with Cohen’s kappa, calculated between individual radiologists and between each radiologist and the model. — PRAUC =0.7235
The metrics were computed on both the original images and the auto-cropped images. 0.0

&
1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Table 2 Pairwise Cohen’s kappa values

Among the 537 CXRs, radiologists classified 78 as PEP (14.5%), while the model classified 25 as PEP (4.7%). The model

achieved an accuracy of 89.4%, sensitivity of 29.5%, specificity of 99.6%, precision of 92.0% and AUROC of 91.8%. Performance Rater 2 Rater 3 Model

varied with inter-observer agreement with AUROC at 95.2% when radiologists agreed (n=443; 82.5%) and 74.5% when they

disagreed (n=94; 17.5%). Other evaluation results stratified by age group and gender and inter-observer agreement are shown in Rater 1 0.540 0.641 0.398

Table 1. The ROC and Precision-Recall curve are shown in Figure 1. Rater 2 NaN 0.544 0.290
Rater 3 NaN NaN 0.363

Model classification following the auto-cropping algorithm performed comparably to that with the original images, because the
Maccabi dataset is generally high quality and contains minimal extraneous area.

Kappa statistics for inter-observer agreement are presented in Table 2. Radiologists showed moderate to substantial agreement
with one another (K = 0.540—-0.641). Agreement between each radiologist and the model was fair (K = 0.290-0.398).

Conclusions

The deep learning-based model identifies pneumonia on pediatric
CXRs with 92.0% precision and nearly 100% specificity compared to

Table 1 Primary performance metrics

No. % of human interpretation. Lower performance when radiologists disagreed
images positive Accuracy Precision Sensitivity Specificity F1 AUROC AUPRC Indicates that the model’s uncertainty aligns with physician uncertainty.

All images 537 14.5% 80.49% 92 0% 29.5% 99.6% 44.7% 91.8% 75 39, High specificity limits false positives, which can help avoid unnecessary

treatments and conserve resources.

Age Differences in performance across settings reflect variation in healthcare
<1 year 40 10.0% 90.0% : 0.0% 100.0% 0.0% 67.4% 15.0% systems: Hong Kong datasets contained later or more severe PEP cases
1 year 167 12.0% 89 29 75.0% 15.0% 99 3% 25 0% 88.6% 52 5% resembling the model’s training data, whereas Israeli CXRs more often

. . . . . . . . captured very early, milder PEP, which are less similar to the training
2 year 125 12.8% 89.6% 80.0% 25.0% 99.1% 38.1% 88.9% 61.7% examples and harder to detect.
3 year 109 20.2% 88.1% 100.0% 40.9% 100.0% 58.1% 98.1% 92.6% Overall, these results support the model’s potential utility for PEP but
4 year 62 16.1% 88.7% 100.0% 30.0% 100.0% 46.2% 93.5% 88.0% highlight the importance of local data and further validation to optimize
f diff t clinical texts.
5 year 34 17.6% 941%  100.0%  667%  1000%  80.0%  100.0%  100.0% PEOTITAIES abIBss SHICTENE STIEEI CONILAS

Sex
Male 231 19.4% 90.9% 92.9% 39.4% 99.5% 55.3% 91.3% 73.6% References
Female 306 10.8% 88.2% 90.9% 22.2% 99.6% 35.7% 92.4% 72.3% 1. Chen, Y., Roberts, C. S., Ou, W., Petigara, T., Goldmacher, G. V., Fancourt, N., &

Inter-observer agreement Knoll, M. D. (2021). Deep learning for classification of pediatric chest radiographs

by WHO's standardized methodology. PLoS one, 16(6), e0253239.
Yes 443 10.4% 93.9% 100.0% 41.3% 100.0% 58.5% 95.2% 79.9%
2.Wang, D., Ry, B,, Lee, E. Y. P, Hwang, A. C. N, Chan, K. C. C., Weaver, J., &
No 94 34.0% 68.1% 66.7% 12.5% 96.8% 21.1% 74.5% 60.7%

Roberts, C. S. (2024). Validation of a deep learning model for classification of
pediatric pneumonia in Hong Kong. Vaccine, 42(26), 126370.
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