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Conclusions

The deep learning-based model identifies pneumonia on pediatric 
CXRs with 92.0% precision and nearly 100% specificity compared to 
human interpretation. Lower performance when radiologists disagreed 
indicates that the model’s uncertainty aligns with physician uncertainty. 
High specificity limits false positives, which can help avoid unnecessary 
treatments and conserve resources.

Differences in performance across settings reflect variation in healthcare 
systems: Hong Kong datasets contained later or more severe PEP cases 
resembling the model’s training data, whereas Israeli CXRs more often 
captured very early, milder PEP, which are less similar to the training 
examples and harder to detect.

Overall, these results support the model’s potential utility for PEP but 
highlight the importance of local data and further validation to optimize 
performance across different clinical contexts.
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Introduction

Primary Endpoint Pneumonia (PEP) is a WHO-defined radiological measure used in vaccine studies for its high specificity for 
bacterial pneumonia, particularly Streptococcus pneumoniae. Retrospective studies using ICD codes for all-cause pneumonia are 
less time consuming and have high sensitivity for bacterial pneumonia but lack specificity. Although the WHO method has proven 
valuable in multiple studies, human interpretation remains time-consuming and subject to inter-reader disagreement,  
often necessitating adjudication panels. 

Advances in deep learning have made automated chest X‑ray (CXR) interpretation practical. Chen et al.1 developed a 
transfer‑learning–based model to classify pediatric CXRs using WHO criteria for PEP, demonstrating strong performance on 
both internal and independent test sets. Subsequent validation with a Hong Kong CXR dataset confirmed the model’s real‑world 
applicability [2].This study aims to further validate that model by assessing its ability to identify PEP in pediatric CXRs in Israel, 
thereby evaluating generalizability across healthcare systems and populations.

Methods

Study Design and Study Sample

This cross-sectional validation study utilized a deep learning model designed to classify CXRs for PEP based on WHO criteria. 
Pediatric CXR images were sourced from Maccabi healthcare system, with classifications determined by three board-certified 
radiologist. The dataset comprised 537 anonymized CXR images selected from children <5 years of age in Israel (2004-2018). 
The same dataset was then subjected to prediction by the deep learning model, which was pre-trained on adult CXR datasets 
and fine-tuned on pediatric data. The level of agreement among each rater and between each rater and the model was evaluated 
as well.

In a secondary analysis, we evaluated the effect of an autosegmentation algorithm on model performance, since 
autosegmentation previously improved results in our validation work in Hong Kong. The autosegmentation algorithm used a 
U‑Net–inspired convolutional neural network. It retains the U‑shaped encoder-decoder segmentation design of the original U‑Net 
but reduces feature dimensionality. The model first segments the pulmonary region and computes a bounding rectangle from  
the mask (with an added margin) to crop the image2.

Statistical analysis

The deep-learning model’s classification performance was compared with the radiologists’ consensus (the gold standard) 
using standard metrics: accuracy, F1 score, precision, sensitivity, specificity, area under the receiver operating characteristic 
curve(AUROC), and the area under the precision and recall curve  (AUPRC). Performance was evaluated on the full dataset  
and within subgroups defined by age, sex, inter-observer agreement, ICU admission, and mortality. Inter-observer agreement 
was measured with Cohen’s kappa, calculated between individual radiologists and between each radiologist and the model.  
The metrics were computed on both the original images and the auto-cropped images.

Results

Among the 537 CXRs, radiologists classified 78 as PEP (14.5%), while the model classified 25 as PEP (4.7%). The model 
achieved an accuracy of 89.4%, sensitivity of 29.5%, specificity of 99.6%, precision of 92.0% and AUROC of 91.8%. Performance 
varied with inter-observer agreement with AUROC at 95.2% when radiologists agreed (n=443; 82.5%) and 74.5% when they 
disagreed (n=94; 17.5%). Other evaluation results stratified by age group and gender and inter-observer agreement are shown in 
Table 1. The ROC and Precision-Recall curve are shown in Figure 1.

Model classification following the auto-cropping algorithm performed comparably to that with the original images, because the 
Maccabi dataset is generally high quality and contains minimal extraneous area.

Kappa statistics for inter‑observer agreement are presented in Table 2. Radiologists showed moderate to substantial agreement 
with one another (K = 0.540–0.641). Agreement between each radiologist and the model was fair (K = 0.290–0.398).

Table 1 Primary performance metrics

No. 
images 

% of 
positive Accuracy Precision Sensitivity Specificity F1 AUROC AUPRC

All images 537 14.5% 89.4% 92.0% 29.5% 99.6% 44.7% 91.8% 72.3%

Age

< 1 year 40 10.0% 90.0%  - 0.0% 100.0% 0.0% 67.4% 15.0%

1 year 167 12.0% 89.2% 75.0% 15.0% 99.3% 25.0% 88.6% 52.5%

2 year 125 12.8% 89.6% 80.0% 25.0% 99.1% 38.1% 88.9% 61.7%

3 year 109 20.2% 88.1% 100.0% 40.9% 100.0% 58.1% 98.1% 92.6%

4 year 62 16.1% 88.7% 100.0% 30.0% 100.0% 46.2% 93.5% 88.0%

5 year 34 17.6% 94.1% 100.0% 66.7% 100.0% 80.0% 100.0% 100.0%

Sex

Male 231 19.4% 90.9% 92.9% 39.4% 99.5% 55.3% 91.3% 73.6%

Female 306 10.8% 88.2% 90.9% 22.2% 99.6% 35.7% 92.4% 72.3%

Inter-observer agreement

Yes 443 10.4% 93.9% 100.0% 41.3% 100.0% 58.5% 95.2% 79.9%

No 94 34.0% 68.1% 66.7% 12.5% 96.8% 21.1% 74.5% 60.7%

Figure 1 ROC curve and Precision-Recall curve
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Table 2 Pairwise Cohen’s kappa values

Rater 2 Rater 3 Model

Rater 1 0.540 0.641 0.398

Rater 2 NaN 0.544 0.290

Rater 3 NaN NaN 0.363
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