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INTRODUCTION OBJECTIVE METHOD

Setting

* elCU Collaborative Research To evaluate the causal impact of
Database (elCU-CRD) ’

Contains 200,859 ICU stays across early antibiotic administration
208 U.S. hospitals on patient outcomes in sepsis

Data period: 2014—-2015 management.

Primary Aim:

Used Double Machine Learning (DML) to estimate causal
effects while minimizing confounding bias.

Applied cross-fit partialling out to improve robustness and

Study Population accuracy.

* Patients admitted to ICU and
Diagnosed with Sepsis during their
hospital stay

Guideline Basis:

Based on the 2021 Surviving
Sepsis Campaign (SSC)
recommendations.

A Lasso regression model served as the machine learning
component, for variable selection and regularization.

Intervention o | |
e Patients who received antibiotics Outcomes: Performed cross-validation across multiple folds to estimate

within <3 hours after ICU admission treatment and outcome residuals.

* Length of hospital stay
Comparator * Length of ICU stay
* Patients who received antibiotics 23 * Hospital mortality rate

hours after ICU admission * ICU mortality rate

Repeated cross-fitting 10 times and averaged results for
reliability.

RESULTS

Confoundmg Factors Table 1. Summary Statistics — Outcome Variables and Time to First Antibacterial Therapy

Demogra ph ICS Administration

* Age, gender, ethnicity, discharge year < 3 hours (n=7,891) >= 3 hours (n=2,176) P value

Clinical & Hospital Factors Hospital mortality, n (%0) 1,095 (14.1%) 355 (16.7%) 0.002

, , , ICU mortality, n (%) 690 (8.7%) 226 (10.4%) 0.019
* ICU type and infection site Length of hospital stay, days 6.4 [4.0-10.8] 7.6 [4.4-13.2] <0.001
e Hospital ID (dummy control) Length of ICU stay, days 2.6 [1.5-4.8] 3.1[1.8-6.3] < 0.001
Time to first antibacterial therapy, hours 1.0 [0.5-1.6] 5.0 [3.7-9.3] < 0.001

Severlty of lliness Measures Notes: The P-values for the first two rows of the table were obtained through the mean
e Acute Physiology Score (APS) , APACHE IV comparison t-test, whereas the P-values for the last three rows of the table were based on the
e Glasgow Coma Scale (GCS) Wilcoxon rank-sum (Mann—Whitney) test. N (%), Median [IQR].

Elixhauser Comorbidity Index

, o Table 2. Main Results — DML Model
¢ |[CD-9 based, computed using R package comorbidity v1.0.5

. . . . Outcome variable Coeftficient 95% bootstrap confidence interval P value
Physiological Variables (First 24 Hours) Hospital mortality 0.00 (-0.01, 0.02) 0.67

e Vital signs: HR, RR, Temp, Mean BP ICU mortality 0.01 (-0.00, 0.02) 0.14
e Labs: WBC, Na, pH, Hct, Creatinine, Albumin, Pa0,, PaCO,, Length ot hospital stay -1.73 (-2.33,-1.13) 0.00
BUN. Gl Bilirubin. FiO Length of ICU stay -0.67 (-0.98, -0.37) 0.00

’ UFOSG, HFabIn, T2 Notes: Estimated coefficients of the early antibacterial therapy on patient outcomes using cross-fit partialing-out
* Total urine output lasso linear model. The Number of folds for cross-fitting was 10 and we allowed for 10 resampling iterations. We

Treatment & Intervention Controls used the default plugin option to select an optimal value of the lasso penalty parameter. 249 covariate variables were
included in the model.

e Intubation, ventilation, dialysis
e Fluid resuscitation

e \/asopressor use

e Ventilation & oxygenation
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Methodological Considerations ’

e Quasi-experimental approaches provide valuable evidence when randomization is unfeasible or unethical.
e Credible DML estimates rely on: Unconfoundedness and Sufficient Covariate Overlap. CO N TACT
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