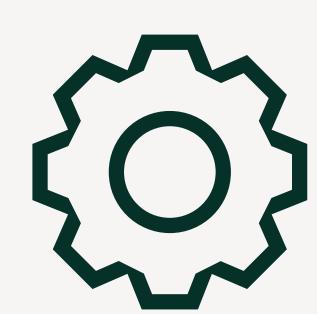

Comorbidities are a risk predictor of kidney disease progression among patients diagnosed with chronic kidney disease

Chengan Du,¹ Kevin F. Erickson,² Ben Modley,³ Wolfgang C. Winkelmayer,² James B. Fotheringham,⁴ Ling Zhang,¹ Dominik Steubl,⁵ Villum Wittrup-Jensen,⁵ Ron Akehurst⁶

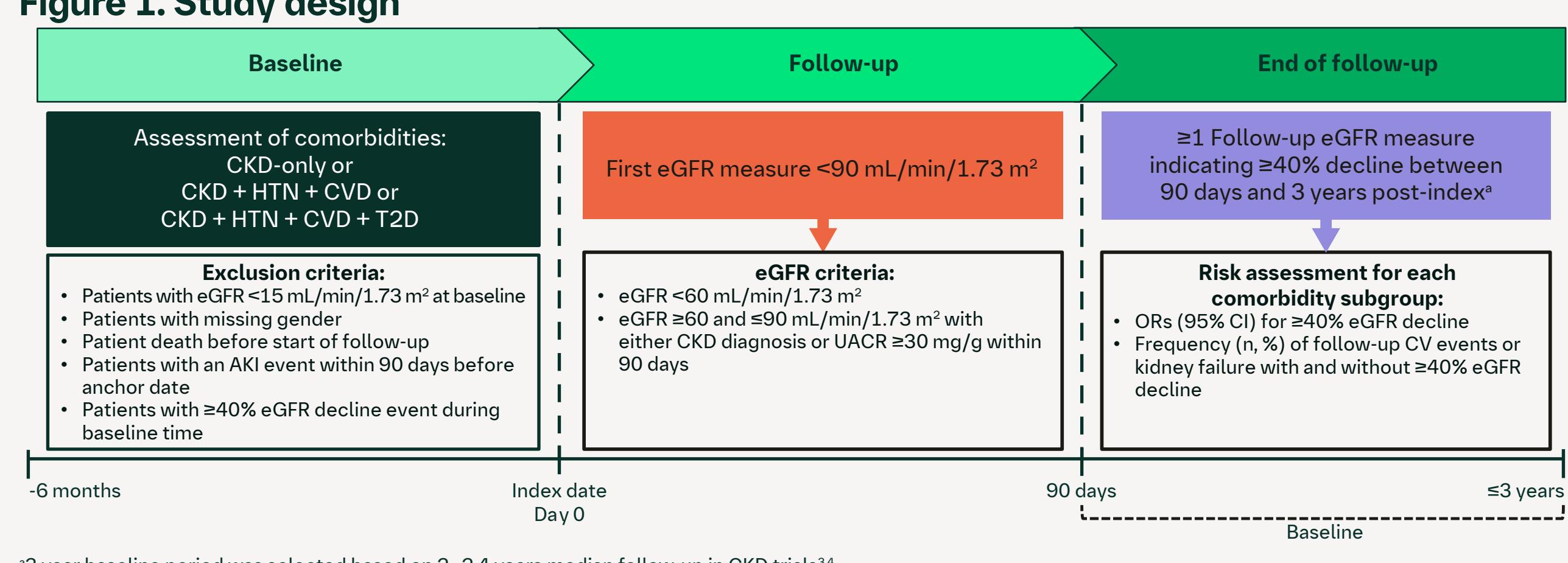
¹Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA; ²Baylor College of Medicine, Houston, TX, USA; ³leads.healthcare, Staufen, Germany;

⁴Sheffield University, School of Medicine and Population Health, Sheffield, UK; ⁵Boehringer Ingelheim Intl. GmbH & Co. KG, Ingelheim am Rhein, Germany; ⁶Lumantify, London, UK

Objective


- The aim of this study is to evaluate how comorbidities, including hypertension, type 2 diabetes, and cardiovascular disease impact CKD progression and adverse health outcomes longer term

Introduction


- Chronic kidney disease (CKD) is a progressive condition affecting millions globally, often accompanied by comorbidities such as hypertension (HTN), type 2 diabetes (T2D), and cardiovascular disease (CVD).^{1,2}
- Estimated glomerular filtration rate (eGFR) is a key biomarker used alongside urine albumin-creatinine ratio (UACR) to monitor kidney function and predict CKD progression
- Although eGFR decline is recognized as a predictor of disease progression, less is known about its association with adverse outcomes in the presence of multiple comorbidities
- Understanding the incremental risk posed by comorbid conditions is critical for optimising disease management and improving patient-relevant outcomes in CKD populations

Methods

- The study design is presented in **Figure 1**. US Optum Market Clarity database linked claims and electronic health records (January 2017–June 2024) were used to identify patients with CKD, defined as ≥ 2 eGFR measures within 1 year and ≥ 90 days apart that are $<60 \text{ mL/min}/1.73 \text{ m}^2$, or ≥ 60 and $\leq 90 \text{ mL/min}/1.73 \text{ m}^2$ with either CKD diagnosis or UACR $\geq 30 \text{ mg/g}$
 - The first valid eGFR date was the index date
 - Patients were required to have 2 additional eGFR values measured during the second and third year post-index, respectively
 - The baseline period spanned from the index date until ≥ 1 eGFR measure indicating $\geq 40\%$ decline between 90 days and 3 years post-index
- Comorbidities were assessed within 6 months before the index date
 - Patients with multimorbid conditions were stratified into subgroups by diagnosis of CKD only, CKD + HTN + CVD, and CKD + HTN + CVD + T2D
- Event rates were calculated for each comorbidity subgroup
 - ORs (95% CI) for the outcome of $\geq 40\%$ eGFR decline were determined via logistic regression
 - The frequency of adverse outcomes (n, %) were determined for patients with and without $\geq 40\%$ eGFR decline

Figure 1. Study design

^a3 year baseline period was selected based on 2–2.4 years median follow-up in CKD trials^{3,4}

Patients

- The mean duration of follow-up across all subgroups was 2.74 years
- Patient demographics are presented in **Table 1**
- The final CKD population consisted of 135,364 patients with CKD only, 251,865 patients with CKD + HTN + CVD, and 237,669 patients with CKD + HTN + CVD + T2D

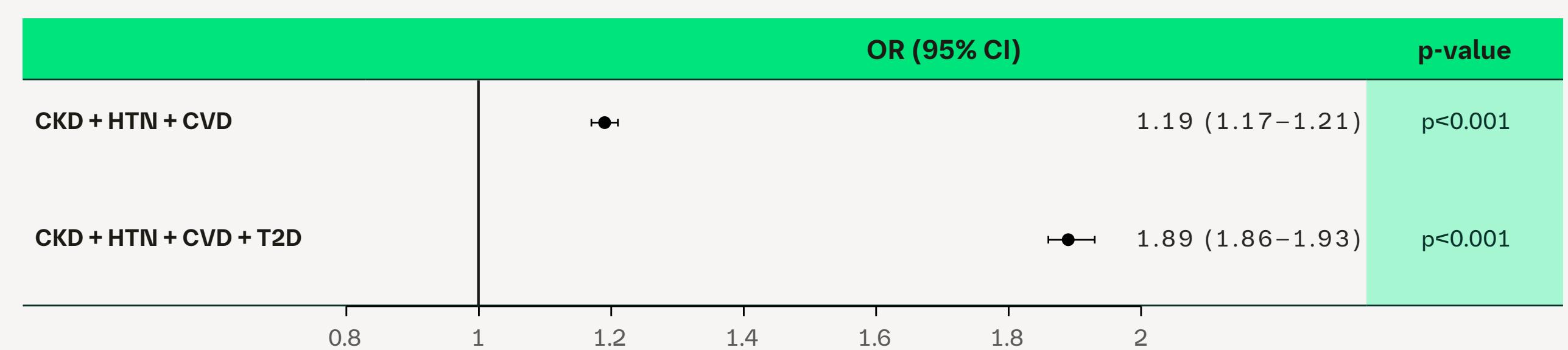
Table 1. Baseline patient demographics and comorbidities

	CKD-only	CKD + HTN + CVD	CKD + HTN + CVD + T2D	Total
Cohort, N	N=135,364	N=251,865	N=237,669	N=624,928
Age, mean (SD)	69.24 (11.38)	72.51 (9.91)	70.60 (9.31)	71.07 (10.11)
Male, n (%)	54,253 (40.08)	100,932 (40.07)	109,761 (46.18)	264,946 (42.40)
Race/ethnicity, n (%)				
Caucasian	106,799 (78.90)	199,779 (79.32)	172,274 (72.48)	478,852 (76.63)
Black	15,252 (11.27)	31,723 (12.60)	40,061 (16.85)	87,036 (13.93)
Asian	2136 (1.58)	2860 (1.14)	4679 (1.97)	9675 (1.55)
Hispanic	1805 (1.33)	2333 (0.93)	4581 (1.93)	8719 (1.40)
Unknown	9372 (6.92)	15,170 (6.02)	16,104 (6.77)	40,646 (6.50)
Pre-baseline covariates, n (%)				
CVD	0 (0)	251,865 (100)	237,699 (100)	489,564 (78.34)
Type 2 diabetes	0 (0)	0 (0)	237,699 (100)	237,699 (38.04)
PAD	3841 (2.84)	38,201 (15.17)	40,475 (17.03)	82,517 (13.20)
Sleep disorder	4745 (3.51)	24,090 (9.54)	36,821 (15.49)	65,586 (10.49)
Hospitalisation for MI	7 (0.01)	3986 (1.58)	5703 (2.40)	9696 (1.55)
Hospitalised stroke	24 (0.02)	4248 (1.69)	5215 (2.19)	9487 (1.52)
Urgent HF visit	2 (0)	3340 (1.33)	4670 (1.96)	8012 (1.28)
Kidney failure	164 (0.12)	2124 (0.84)	2630 (1.11)	4918 (0.79)

Presented at: the Professional Society for Health Economics and Outcomes Research (ISPOR) Europe; Glasgow, Scotland, UK; 9–12 November 2025

Presenter: Ling Zhang, MPH, MSc, MD, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA; email: ling_zhang@boehringer-ingelheim.com

Abbreviations
CI, confidence interval; CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HF, heart failure; HR, hazard ratio; MI, myocardial infarction; OR, odds ratio; PAD, pulmonary artery disease; T2D, type 2 diabetes; UACR, urine albumin-creatinine ratio.


References
1. Kovinsky CP. *Chronic Kidney Disease* (2011); 2022;12(1):7–11.
2. Winkelmayer et al. *J Am Soc Hypertens*. 2007;1(3):178–84.
3. Heerspink HJL et al. *N Engl J Med*. 2020;383:1436–46.
4. The EMPA-KIDNEY Collaborative Group, et al. *N Engl J Med*. 2023;388:117–27.

Results

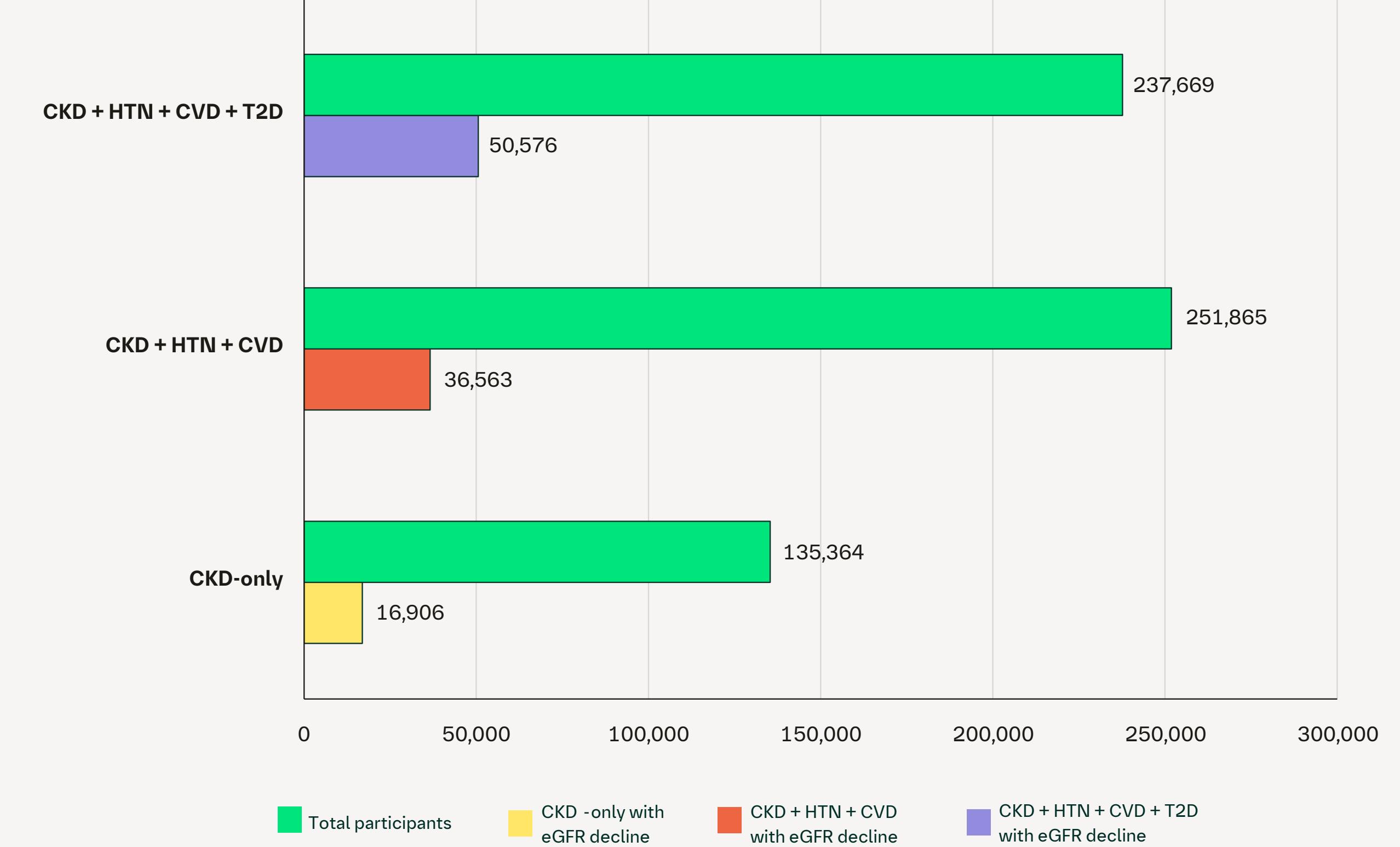

- The risk of CKD progression of $\geq 40\%$ eGFR decline increased by 19% and 89% in patients with CKD + HTN + CVD and CKD + HTN + CVD + T2D, respectively, in comparison to patients with CKD only (**Figure 2**)
- Across subgroups, the proportion of patients with eGFR decline $\geq 40\%$ increased in correspondence with comorbidity burden, representing 12.49%, 14.52%, and 21.28% of patients with CKD only, CKD + HTN + CVD, and CKD + HTN + CVD + T2D, respectively (**Figure 3**)
- For each comorbidity subgroup, the incidence of adverse outcomes was higher in patients with $\geq 40\%$ decline in eGFR compared to those with $<40\%$ decline in eGFR (**Table 2**)
 - The proportion of patients with $\geq 40\%$ decline in eGFR who experienced an adverse outcome consistently increased with the addition of each comorbidity across patients with CKD only, CKD + HTN + CVD, and CKD + HTN + CVD + T2D, respectively

Figure 2. Odds ratios (95% CI) for eGFR decline $\geq 40\%$ according to comorbidity subgroups^a

^aCompared with the CKD-only cohort

Figure 3. Number of CKD patients with eGFR decline $\geq 40\%$ by comorbidity subgroup

Table 2. Frequency of adverse follow-up outcomes by comorbidity subgroup and eGFR decline $<40\%$ or $\geq 40\%$

	CKD-only		CKD + HTN + CVD		CKD + HTN + CVD + T2D	
Outcomes, n (%)	eGFR decline $<40\%$	eGFR decline $\geq 40\%$	eGFR decline $<40\%$	eGFR decline $\geq 40\%$	eGFR decline $<40\%$	eGFR decline $\geq 40\%$
CV-related death	8309 (7.01)	2855 (16.89)	26,549 (12.33)	9289 (25.41)	25,894 (13.84)	13,250 (26.20)
Hospitalisation for MI	10,133 (8.55)	3878 (22.94)	31,203 (14.49)	10,787 (29.50)	35,199 (18.81)	17,903 (35.40)
Hospitalised stroke	13,260 (11.19)	3724 (22.03)	37,222 (17.29)	10,495 (28.70)	38,386 (20.51)	16,693 (33.01)
Urgent HF visit	5365 (4.53)	2625 (15.53)	23,597 (10.96)	9572 (26.18)	25,115 (13.42)	15,037 (29.73)
Kidney failure	3791 (3.20)	2236 (13.23)	8797 (4.09)	3788 (10.36)	13,970 (7.47)	8801 (17.40)

Conclusions

- The growing population of patients with multimorbid CKD face a significantly increased risk of sustained $\geq 40\%$ eGFR decline and adverse health outcomes compared with patients who have CKD alone
- The findings of this study highlight the unmet need for personalised disease management strategies to address the complex requirements of multimorbid CKD patients in order to mitigate kidney disease progression, improve patient outcomes, and reduce mortality risk

Disclosures
CD, LZ, DS, and JMW report employment by Boehringer Ingelheim. JMF has received personal fees from Boehringer Ingelheim, Acumen LLC, Fresenius Medical, and DIO. BMJ has received consulting honoraria from Boehringer Ingelheim. WCM has received personal fees from Akelia, AstraZeneca, Boehringer Ingelheim, Cerebral, City, Eisai, Merck, Natus, Novartis, and Vela. JBF has received honoraria from Boehringer Ingelheim, paid to the employer. RA reports employment by Lumantify and is a consultant for Boehringer Ingelheim.

Acknowledgments
The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE) as supported by Good Publication Practice (GPP) guidelines. The authors did not receive payment related to the development of this poster. Jia Gao, PharmD, of Evision Ignite, an Evision Medical Communications agency, a part of Evision Pharma Group, provided writing and formatting support, which were contracted and funded by Boehringer Ingelheim. Boehringer Ingelheim was given the opportunity to review the poster for medical and scientific accuracy, as well as intellectual property considerations. The study was supported and funded by Boehringer Ingelheim.

