

# Validating a Medication Adherence Index in a Large Urban Population

Jasjot Saund, Isobel Weinberg, Dan Stein, Lawrence Adams, Joe Zhang

Poster Code:  
RWD191

## Introduction

Medication adherence remains a poorly quantified yet highly valuable predictor of disease progression in long-term diseases.<sup>1</sup> Without a gold standard and practical adherence measure, opportunities for early intervention in deteriorating patients are missed.<sup>2</sup>

Proportion Days Covered (PDC) offers a method of estimating adherence by harnessing pharmacy refill data.<sup>3</sup> Although a practical measure, PDC is not validated.<sup>4</sup>

## Methods

Longitudinal, person-level data from **Northeast London GP EHRs** spanning the last 25 years. Including demographic covariates and pharmacy refill data (dispensed orders and prescribed statements).

Multiple PDC formulations were calculated using the base equation below:

$$PDC = \frac{\# \text{ of days supplied}^*}{\# \text{ of days in POI}^{**}}$$

### 1 Multi-level adjusted logistic regression

Cohort: Those with a clinician-recorded adherence code and prescription of Long-Term Condition medication\*\*\* (LTCm) within Period of Interest (POI).

POI: date of clinician-recorded adherence code +/- 12 months, 6 months and 3 months.

$$\text{adherence code} \sim PDC + \text{covariates}^{****}$$

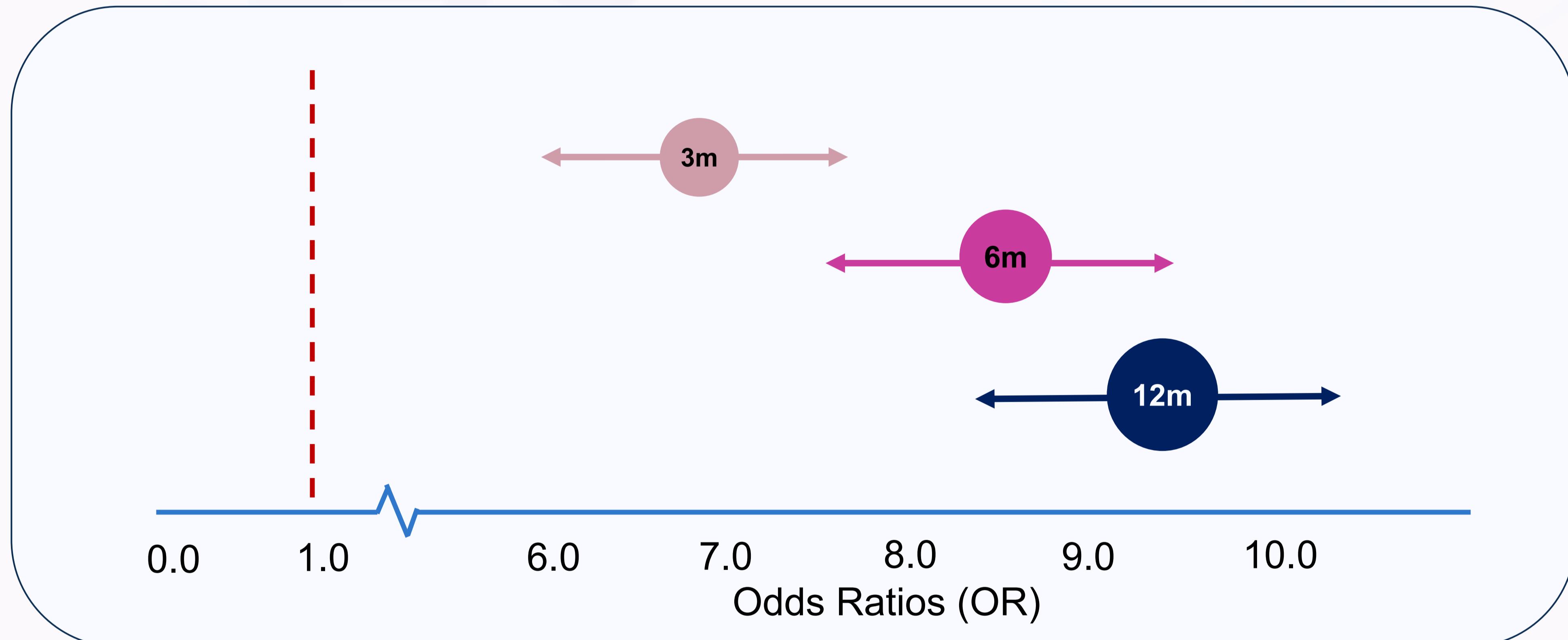
### 2 Adjusted linear regression

Cohort: Those on LTCm. Excluded if: on LTCm < 1yr or < 2 biological measurements at the start and end of LTCm course.

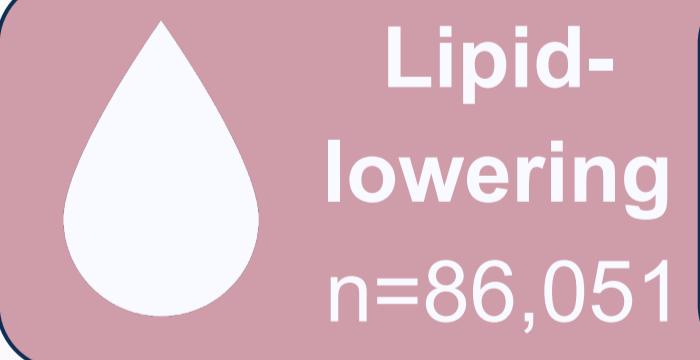
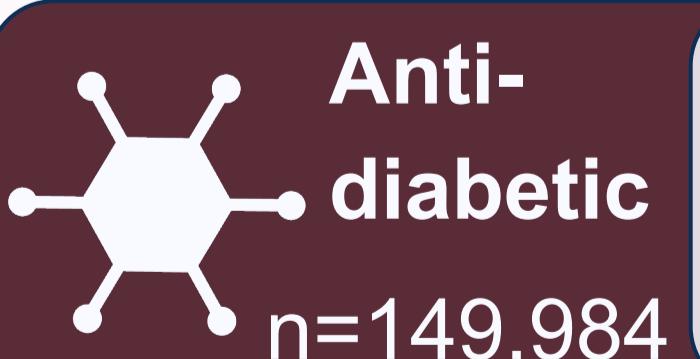
POI: Days LTCm prescribed on statement (used as PDC denominator).

$$\text{change in biomarker} \sim PDC + \text{covariates}$$

## Objectives


We aim to validate the PDC index (and the most reliable formulation of PDC) in 2 assessments:

- 1 Association between PDC index and subjective adherence by a clinician.
- 2 Association between PDC index and objective measure of long-term disease progression (e.g. systolic blood pressure)



$N_0$ : There is no association of PDC index with subjective or objective measure of adherence.

## Results

- 1 All PDC formulations showed significant associations with clinician-recorded adherence codes, with the largest effect size in the 12 months prior to a coded status (n=300,843; OR: 9.31, CI:8.61 to 10.07).



- 2 PDC was significantly associated with reductions in relevant biomarkers in the 3 LTCm cohorts

|                                                                                                                       |                               |                                                                     |                        |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|------------------------|
|  Lipid-lowering<br>n=86,051      | Normal range<br>< 3.0 mmol/L  | $\uparrow \text{PDC} = \downarrow \text{LDL}$<br>by 0.21 mmol/L     | 95% CI: -0.24 to -0.18 |
|  n=424,289<br>Anti-hypertensives | Normal range <<br>120/80 mmHg | $\uparrow \text{PDC} = \downarrow \text{SBP}$<br>by 2.39 mmHg       | 95% CI: -2.56 to -2.21 |
|  Anti-diabetic<br>n=149,984      | Normal range <<br>42 mmol/mol | $\uparrow \text{PDC} = \downarrow \text{HbA1c}$<br>by 3.38 mmol/mol | 95% CI: -3.70 to -3.06 |

## Conclusion

- **Findings:** PDC was significantly associated with clinician-recorded adherence and improvements in key biomarkers, supporting its use as a pragmatic measure of long-term adherence in clinical practice and research.
- **Strengths:** Large longitudinal dataset and inclusion of both subjective and objective adherence measures for validation against PDC.
- **Limitations:** Possible residual confounding from lifestyle and/or dietary factors affecting BP, cholesterol, and HbA1c.

References and additional information

1. Robin DiMatteo, M. PhD<sup>1</sup>; Giordani, Patrick J. MA<sup>2</sup>; Lepper, Heidi S. PhD<sup>3</sup>; Croghan, Thomas W. MD<sup>4</sup>. Patient Adherence and Medical Treatment Outcomes: A Meta-Analysis. *Medical Care* 40(9):p 794-811, September 2002.3. Dalli, L.L. et al. (2022)
2. Stewart, S.-J.F., Moon, Z.oe and Horne, R. (2023) 'Medication nonadherence: health impact, prevalence, correlates and interventions'. *Psychology & Health*, 38(6), pp. 726–765. Available at: <https://doi.org/10.1080/08870446.2022.2144923>.
3. Prieto-Merino D, Mulick A, Armstrong C, Hoult H, Fawcett S, Eliasson L, Clifford S. Estimating proportion of days covered (PDC) using real-world online medicine suppliers' datasets. *J Pharm Policy Pract*. 2021 Dec 29;14(1):113. doi: 10.1186/s40545-021-00385-w. PMID: 34965882; PMCID: PMC8715592.
4. Dalli, L., Kilkenny, M. F., Arnett, I., Sanfilippo, F. M., Cummings, D. M., Kapral, M. K., Kim, J., Cameron, J., Yap, K. Y., Greenland, M., & Cadilhac, D. A. (2022). Towards better reporting of the proportion of days covered method in cardiovascular medication adherence: A scoping review and new tool TEN-SPIDERS. *British journal of clinical pharmacology*, 88(10), 4427–4442. <https://doi.org/10.1111/bcp.15391>

\*Unique days covered vs overlapping days were investigated.

\*\*POI end was evaluated as both the end of the period (regardless of statement end) and the end of the statement.

\*\*\* LTCm's were drugs within BNF classes for anti-hypertensives (beta-blockers, ACEi, ARBs, CCBs), anti-diabetics (sulphonylureas, biguanides, other antidiabetic drugs) and lipid-lowering drugs.

\*\*\*\* clustered by person to account for within participant correlations.