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• Accurate medical code lists are vital for studies using real-world data. Creating code 

lists in a consistent, transparent and reproducible way is a challenge for 

researchers1.

• Comprehensive code lists creation requires reviewing each code description of the 

full medical vocabulary. This is extremely time-consuming and resource intensive, 

particularly due to the high number of irrelevant codes that need to be reviewed. 

• Large-language models (LLMs) have been shown to be successful in medical 

reasoning, assisting clinical decision making2 and to accurately derive diagnosis 

codes from medical notes3, 4.

• Here we explore if LLMs can be used to support in code list generation.

1 Williams et al. (2019) PLOS One; 14(2).
2 Chang et al. (2023) Nat Med; 29:1930-40.
3 Klang et al. (2024)  medRxiv.

4 Cabral et al. (2024) JAMA Int Med; 184:581-583.
5 Quan et al. (2005) Med Care; 43:1130-1139.

• Evaluate the accuracy of LLM-generated code lists by comparing against those 

published for conditions of the Charlson Comorbidity Index (CCI).

• We used the validated code lists of the CCI’s 17 conditions as published by Quan et 

al5 as reference standard against which to evaluate the LLM performance. 

• For each condition, we prompted the LLM (ChatGPT, o3 mini) to assign a score and 

brief justification to each of the 16,287 medical code description of the ICD-10-WHO 

code dictionary (Figure 1). 

• The score indicates how relevant a medical code is to the condition of interest and 

ranged from 0 indicating not relevant at all to 100 indicating an exact match.    

• This full list of scored medical codes can be used to generate code lists by setting 

relevance score thresholds.
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CONCLUSIONS
These early results indicate that LLMs may be useful in identifying and 

excluding large numbers of irrelevant codes with very low risk of false 

negatives. This makes a manual code list review to improve accuracy 

much more tractable.

Additional work is ongoing to further improve accuracy of the LLM. 

Efforts include prompt engineering and comparisons of performance of 

different LLMs. Further work is ongoing to assess LLM performance in 

other vocabularies. 
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• We used performance metrics of sensitivity, specificity, positive predictive value 

(PPV), and negative predictive value (NPV) to assess LLM ability to classify codes 

for each of the CCI conditions. 

• Figure 2 shows results overall and for each of the 17 CCI condition when setting the 

threshold to include all codes scored 1 or higher into the LLM-generated code list.

• >99.9% sensitivity across all conditions when excluding codes with relevance score 

of 0. The only false negative was observed for Chronic Pulmonary Disease (J66.2

 Cannabinosis).

• High specificity (93.5%) and negative predictive value (>99.9%), show strong ability 

to exclude irrelevant codes from code lists.

• Positive predictive value was modest (6.1%) overall, with some variation between 

conditions, indicating that manual review remains essential to refine final lists.

Figure 1: LLM code list scoring process flow

Figure 2: Classification metrics by condition of the Charlson Comorbidity Index

ch: chronic, NPV: negative predictive value, PPV positive predictive value w/: with, w/o: without
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