

# Assessing the Environmental Value of Semaglutide: GHG Emissions Reduction Resulting from the Treatment of Obese Individuals with Type 2 Diabetes



Emily Archer Goode, Amy Swanston, Rebecca Mackley, Antony Wright, Lindsay Nicholson  
Maverex Limited, Newcastle upon Tyne, UK

HSD8

## 01 BACKGROUND

- Obesity is a significant issue faced by modern day society, with 64.5% of adults in England being overweight (body mass index [BMI] 25 – 29.9) or obese (BMI >30).<sup>1</sup>
- Obese individuals have a greater risk of co-morbidities, such as coronary heart disease and type 2 diabetes (T2D).<sup>2</sup>
- Healthcare resource utilisation (HCRU) and associated healthcare costs increase with BMI, which is largely driven by co-morbid conditions.<sup>3</sup>

- Semaglutide treatments (glucagon-like peptide-1 [GLP-1] receptor agonists) have been approved for the management of obesity and T2D in England.<sup>4</sup>
- These treatments reduce BMI by ~15% within 68 weeks and improve cardiometabolic risk factors.<sup>5-7</sup>
- Healthcare is a significant contributor to greenhouse gas (GHG) emissions.
- The National Health Service in England has set the target of becoming net-zero by 2045 for direct and indirect emissions.<sup>8</sup>



## 02 OBJECTIVE

- The objective of this study was to evaluate the environmental impact of semaglutide treatment by estimating the GHG emissions, measured as carbon dioxide equivalents (CO<sub>2</sub>e), associated with HCRU in obese individuals with T2D, with and without semaglutide treatment.

## 03 METHODS



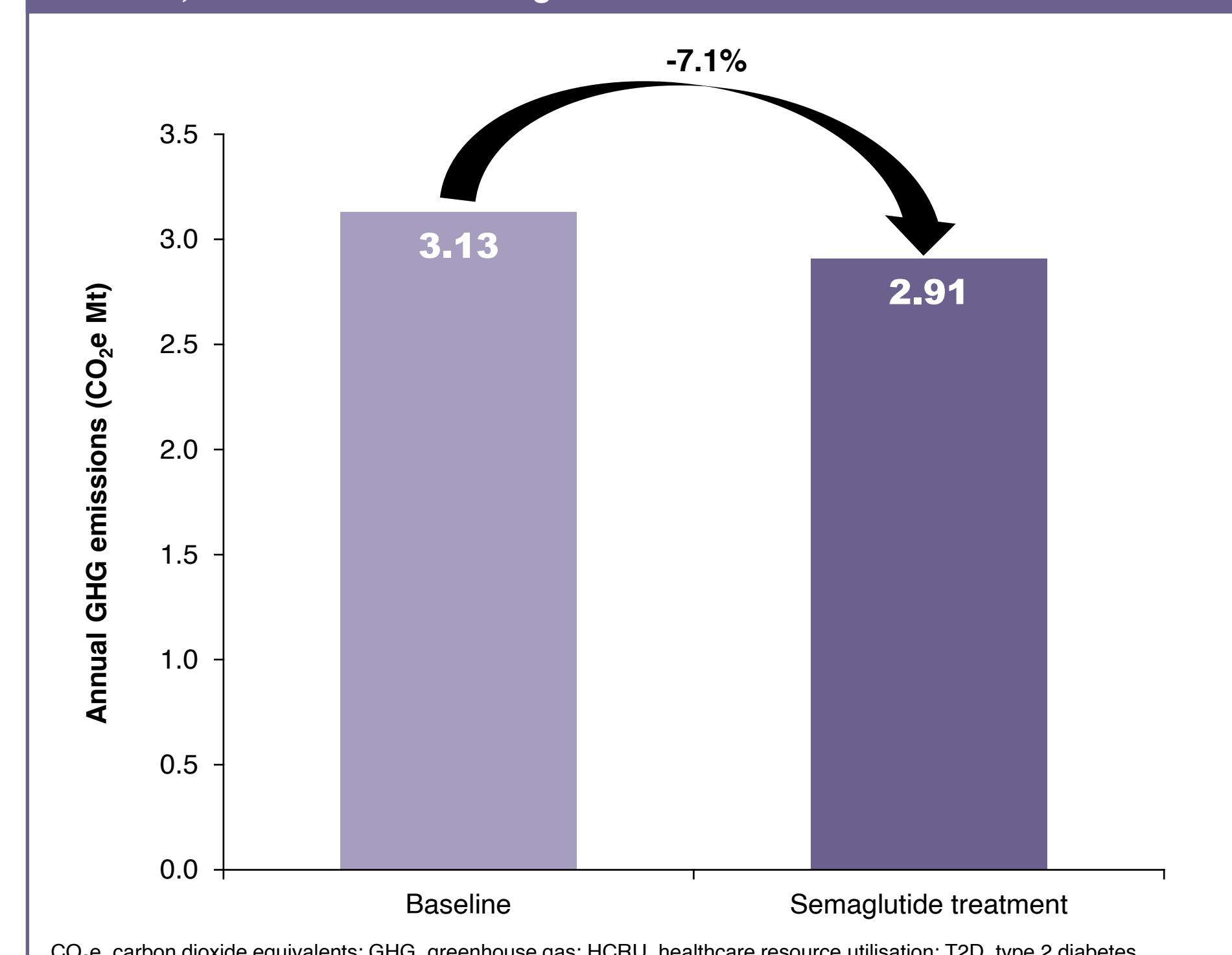
Table 1. Data inputs, assumptions, and source references used to inform key study inputs.

| Data                        | Data value                                                                        | Assumptions                                                                                                                            | Reference(s)                                                                                                                  |
|-----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Eligible patient population | 3,400,000                                                                         | Tirzepatide has a similar eligible patient population (comparable marketing authorisation patient eligibility criteria to semaglutide) | National Institute for Health and Care Excellence (2024) <sup>11</sup>                                                        |
| BMI relative distribution   | Extrapolated from graph: "Trend in the distribution of adult BMI", 2016-2018 data | BMI relative distribution has not significantly changed since 2016-2018                                                                | Hancock (2021) <sup>12</sup>                                                                                                  |
| BMI reduction over 1 year   | 15%                                                                               | BMI reductions observed in clinical trials will translate into real-world outcomes                                                     | Wilding <i>et al.</i> (2021), <sup>5</sup> Davies <i>et al.</i> (2021), <sup>6</sup> Wadden <i>et al.</i> (2021) <sup>7</sup> |
| HCRU per BMI category       | Data from Table 2.c., "T2D population baseline characteristics (n = 68,489)"      | N/A                                                                                                                                    | le Roux <i>et al.</i> (2018) <sup>2</sup>                                                                                     |

BMI, body mass index; HCRU, healthcare resource use; N/A, not applicable; T2D, type 2 diabetes.

Table 2. Data sources and assumptions for calculating GHG emissions resulting from HCRU

| Care pathway component                     | Care pathway sub-component           | GHG emissions (CO <sub>2</sub> e) per care pathway sub-component | Unit                         | Total GHG emissions (CO <sub>2</sub> e) per care pathway component | Assumptions                                                                                                                                                                   | Reference(s)                            |
|--------------------------------------------|--------------------------------------|------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| GP visit                                   | GP appointment                       | 1.10                                                             | Per visit                    | 2.22                                                               | N/A                                                                                                                                                                           | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Patient travel to GP                 | 1.12                                                             | Per round trip               |                                                                    | Travel value multiplied by 2 to equate to a round trip.                                                                                                                       | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | A&E visit                            | 14.00                                                            | Per visit                    |                                                                    | N/A                                                                                                                                                                           | SHC Carbon Factors Table <sup>13</sup>  |
| Hospital inpatient – low intensity (acute) | Inpatient admission - low intensity  | 292.60                                                           | Per inpatient stay           | 318.33                                                             | 7.7 days average inpatient admission.                                                                                                                                         | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Travel - non-emergency               | 4.03                                                             | Per round trip               |                                                                    | Travel values weighted for 80% non-emergency, 20% emergency travel. Average round-trip distance 14.4 km. DEFRA emission conversion factor used for medium petrol-fuelled car. | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Travel - emergency                   | 7.70                                                             | Per round trip               |                                                                    | Travel values weighted for 80% non-emergency, 20% emergency travel. One-way emergency, one-way non-emergency travel.                                                          | SHC Carbon Factors Table <sup>13</sup>  |
| Hospital inpatient – high intensity (ICU)  | A&E visit                            | 14.00                                                            | Per visit                    |                                                                    | N/A                                                                                                                                                                           | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Inpatient admission - high intensity | 468.00                                                           | Per inpatient stay           |                                                                    | 5.2 days average length of stay in ICU.                                                                                                                                       | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Inpatient admission - low intensity  | 292.60                                                           | Per inpatient stay           |                                                                    | 7.7 days average inpatient admission. Patients will be discharged from ICU to low intensity wards.                                                                            | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Travel - non-emergency               | 1.01                                                             | Per round trip               |                                                                    | Travel values weighted for 20% non-emergency, 80% emergency travel. Average round-trip distance 14.4 km. DEFRA emission conversion factor used for medium petrol-fuelled car. | SHC Carbon Factors Table <sup>13</sup>  |
|                                            | Travel - emergency                   | 30.81                                                            | Per round trip               |                                                                    | Travel values weighted for 20% non-emergency, 80% emergency travel. One-way emergency, one-way non-emergency travel.                                                          | SHC Carbon Factors Table <sup>13</sup>  |
| Prescriptions                              | Prescriptions                        | 0.546                                                            | Per £ spent on prescriptions | 0.546                                                              | Spending data directly correlates with GHG emissions.                                                                                                                         | University of Leeds (2022) <sup>9</sup> |


A&E, accident and emergency; CO<sub>2</sub>e, carbon dioxide equivalents; DEFRA, Department for Environment, Food and Rural Affairs; GP, general practice; GHG, greenhouse gas; ICU, intensive care unit; SHC, Sustainable Healthcare Coalition; N/A, not applicable.

## 04 RESULTS



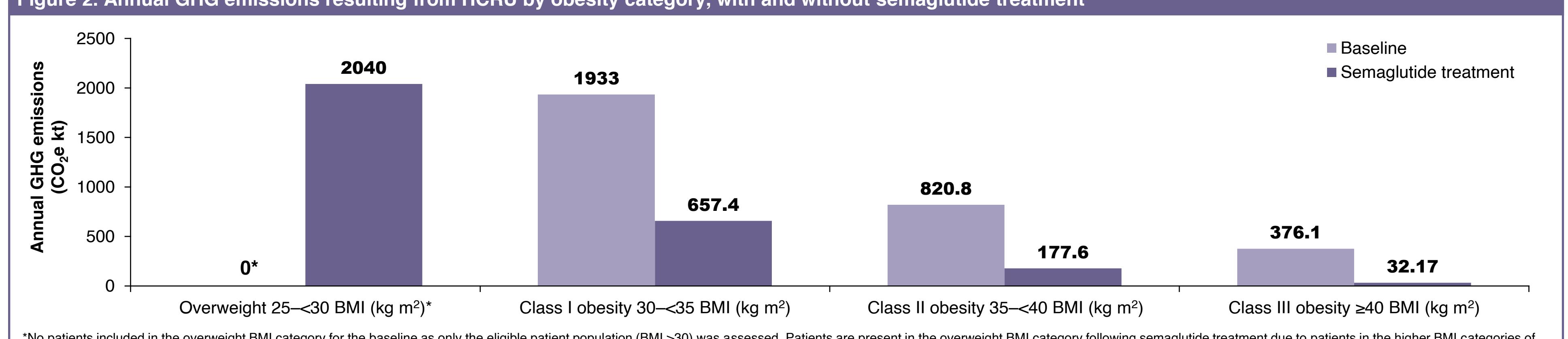

- Among the population of obese individuals with T2D in England without semaglutide treatment, annual GHG emissions associated with HCRU were estimated at 3.1 megatonnes (Mt) of CO<sub>2</sub>e (Figure 1).
- In the eligible patient population, a 15% reduction in BMI following semaglutide treatment corresponded to a 7% reduction in GHG emissions resulting from HCRU over one year (Figure 1).

Figure 1: Annual GHG emissions resulting from HCRU in obese individuals with T2D, with and without semaglutide treatment



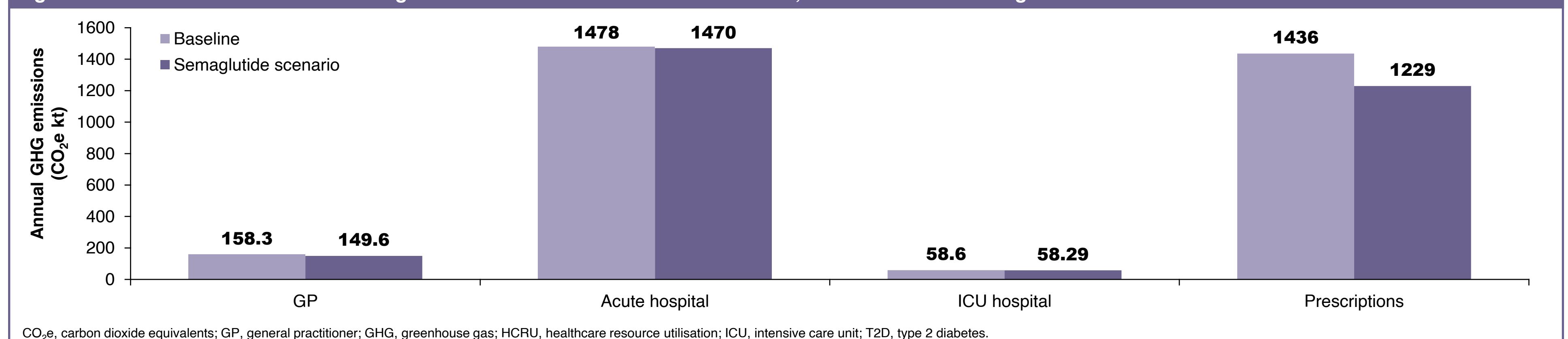

- GHG emissions positively correlated with increasing BMI at the per patient level, with an estimated 0.88, 0.97 and 1.04 tonnes of CO<sub>2</sub>e resulting from HCRU per patient annually for class I (30 – <35 BMI), class II (35 – <40 BMI) and class III obesity (>40 BMI), respectively, at baseline.
- Without semaglutide treatment (baseline), individuals with class I obesity were the largest contributor to GHG emissions, reflecting the higher prevalence of this health state within the eligible patient population. In the semaglutide treatment scenario, many individuals moved to the overweight category, which therefore became the main source of annual GHG emissions (Figure 2).

Figure 2. Annual GHG emissions resulting from HCRU by obesity category, with and without semaglutide treatment



- Semaglutide treatment led to GHG emission reductions of 6% for general practice visits, 1% for hospital admissions and a 14% reduction for prescriptions, relative to the baseline population (Figure 3).
- Prescriptions were the key driver of reductions in GHG emissions following semaglutide treatment. When pharmaceuticals were excluded, the overall relative reduction in GHG emissions annually for the eligible patient population was 1%, indicating that pharmaceuticals accounted for 86% of the total estimated reductions in GHG emissions following semaglutide treatment.

Figure 3. Annual GHG emissions resulting from HCRU in obese individuals with T2D, with and without semaglutide treatment



### Limitations:

- Semaglutide treatments are associated with side effects which may incur additional HCRU. This was not captured within this study.
- This study was informed using HCRU data on obese individuals with T2D. Other comorbidities commonly experienced by obese individuals may result in different patterns of HCRU to those observed in T2D patients.
- Prescriptions were the main driver of GHG emissions reductions. However, these estimates carry substantial uncertainty due to reliance on economic input data combined with emission factors to quantify their environmental impact.
- GHG emissions from semaglutide injections were excluded from this study due to a lack of reliable data.

## 05 CONCLUSIONS



- Semaglutide treatment in obese individuals with T2D could lead to substantial GHG emissions savings resulting from reduced HCRU due to decreased BMI and improvements to cardiometabolic risk factors.
- The estimated 223.2 kt CO<sub>2</sub>e savings resulting from semaglutide treatment is equivalent to 1% of the total annual CO<sub>2</sub>e emissions reported for the NHS in 2024/2025.<sup>10</sup>
- Future research could build on the findings of this study by modelling the environmental impact of semaglutide injections, quantifying the effects of treatment-related side effects, and extending the analysis to longer treatment durations.

### References

- Office for Health Improvement and Equality, Obesity profile: annual statistics commentary, May 2023 [Internet]. GOV.UK [cited 2023 Oct 16]. Available from: <https://www.gov.uk/government/statistics/obesity-profile-annual-statistics-commentary-2023>
- Borgly A. Obesity and healthcare resource utilisation: results from Clinical Practice Research Database (CPRD). *Chir Sci Pract*. 2018 Aug;21(4):409-16.
- Rudall C, Charman I, Booth MP, Gulliford MC. Are healthcare costs from obesity associated with body mass index, comorbidity or depression? Cohort study using electronic health records. *Chir Sci Pract*. 2018 Aug;21(4):409-16.
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 13]. Available from: <https://www.gov.uk/government/publications/nhs-expenditure-and-activity-in-england-2022-23>
- Wadden TA, Billings TS, Billings LK, Davies M, Freis JP, Korobkin A, et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity. *JAMA*. 2021 Apr 13;325(14):1397-1407. Available from: <https://jamanetwork.com/journals/jama/article/2730339>
- Office for Health Improvement and Equality, Progress report – delivering a greener NHS: five years on [Internet]. 2023 Sep [cited 2023 Oct 16]. Available from: <https://www.gov.uk/government/progress-reports-delivering-a-greener-nhs-wp-content/uploads/sites/51/2020/10/delivering-a-zero-national-health-service.pdf>
- Health and Social Care Information Centre. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. 2024 [cited 2023 Oct 14]. Available from: <https://www.hscic.org.uk/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from: <https://www.gov.uk/government/statistics/nhs-expenditure-and-activity-in-england-2022-23>
- Office for National Statistics. National Health Service Expenditure and Activity in England, 2022-23 [Internet]. GOV.UK [cited 2023 Oct 14]. Available from