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Continuous Dirichlet Mixture Model

• We proposed the use of a CDM model to account for multimodality in individual preference weights (see 

Setup in Box 1).

• Specifically, the model assumes that there are 𝐶 priorities around which the preference weights cluster 

following different Dirichlet distributions. The number of priorities is unknown a priori and endogenously 

estimated via the model.

• The CRP assigns an individual to either:

— a new Dirichlet distribution (preference cluster) that is generated proportionally to a concentration 

parameter 𝛿, with the probability 𝜋𝑛
𝑛𝑒𝑤 = Τ𝛿 (𝛿 + 𝑁 + 1) 

— or assigns the individual to an already generated Dirichlet distribution (preference clusters, c) with a 

probability proportional to the share of people previously assigned to that distribution (𝑛𝑐 out of the 𝑁 

total individuals), specifically 𝜋𝑛
𝑐 = Τ𝑛𝑐 (𝛿 + 𝑁 + 1) Τ ((𝛿 + 𝑁 + 1))

• The key property of this approach is that 𝛿 does not pre-specify the number of preference clusters, 

unlike in a latent class model, where this would be specified, but governs the discovery of the number of 

clusters, which grows at the rate 𝛿ln(𝑁). 

• The log-likelihood function of the model is given by ℒℒ = σ𝑛∈[1;𝑁] 𝑙𝑛 σ𝑐∈[1;𝐶𝑛−1] 𝜋𝑛
𝑐 𝑓𝜔|𝑐 + 𝜋𝑛

𝑛𝑒𝑤𝑓𝜔|𝐶𝑛
 with 

𝑓𝜔|𝑐 being the Dirichlet distribution of a given preference cluster (see Box 1) that is associated with 

cluster-specific preference weights 𝜔𝑐 = 𝜔1
𝑐;  𝜔2

𝑐; … ; 𝜔𝐾
𝑐 .

• A Markov-Chain Monte Carlo approach was used for model estimation.
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Background

• Individual-level preference-elicitation methods, such as thresholding or swing-weighting, have been 

proposed in the literature to facilitate the collection of stakeholder preferences in small samples. For 

instance, understanding the benefit-risk trade-offs that individuals with a rare disease are willing to make 

can support the regulatory evaluation of novel therapies or help determine patient-relevant changes in 

de novo endpoints.1,2 

• While such individual-level data provide rich insights into preference heterogeneity by design, sample-

level characterizations can be challenging. Given that many decisions happen at the population level, 

this challenge is of practical relevance.

• Dirichlet regression has been suggested for averaging individual-level preference data in this context. 

However, Dirichlet distributions impose restrictive assumptions. Specifically, the Dirichlet distribution is 

unimodal, symmetric, and imposes a rigid, always negative correlation structure between parameters 

(see Box 1).3-5 

• These restrictions do not hold if preferences cluster across different treatment priorities. For instance, 

some patients may focus on maximizing treatment efficacy, while others minimize treatment risks. 

• Accounting for complex heterogeneity patterns in preference research is important for decision making 

along the entire healthcare life cycle and avoids biased preference estimates.6

Figure 1. Percent Bias by Model

Conclusions and Recommendations
• Not accounting for multimodality can bias mean preference weight estimates, 

but the magnitude of bias depends on the clustering of preference weights. 

• In the case of a large overlap in preference priorities between clusters, the 

standard Dirichlet model performs well. 

• In the case of small overlap in preference priorities between clusters (i.e. distinct 

treatment priorities by cluster) the CDM model is preferrable.

• We encourage researchers to explore complex patterns of heterogeneity in the 

analysis of preference data. Appropriate accounting for heterogeneity may 

reduce bias, and insights obtained from inspecting the joint distribution can be 

decision-relevant.
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Model Performance

• The CDM model was evaluated using the same simulation that evaluated the standard Dirichlet 

regression (one distribution), and the results are displayed in the right column of Figure 1.

• For all cases, the CDM model performance was non-inferior or superior to the standard Dirichlet 

regression, with no differences in the case of unimodal preferences and negligible differences if the 

Dirichlet distributions had a large overlap (i.e., if the preference clusters had similarities in preference 

priorities). 

• The  average bias ranged from 0.9% to 2.3% across the five attributes. 

— In the case of multimodal preferences with small overlap between distributions (preference clusters), 

the estimation bias was reduced considerably to <5% with the CDM compared to standard Dirichlet 

regression (assuming only one cluster). 

• The average estimation time was longer for the CDM (several minutes) compared to the standard 

Dirichlet regression (several seconds), but the difference is unlikely to be of practical relevance.

Objectives

• To quantify the bias in mean estimates from standard Dirichlet regression in 

the presence of multimodal preferences.

• To explore the application of a continuous Dirichlet mixture (CDM) model that 

combines multiple Dirichlet distributions using a Chinese restaurant process 

(CRP), to account for multimodal preferences.

Bias Evaluation

• We used a simulation approach to quantify the bias in estimated mean preference weights 

(see Box 1) from a standard (i.e., unimodal) Dirichlet regression in a five-attribute decision problem, 

assuming in the presence of multimodal preference heterogeneity.

— For example, assuming everyone prefers to minimize risk, when there may be a cluster of individuals who 

want to minimize risk while another cluster of individuals wants to maximize benefits.

• Simulated Dirichlet distributions (Table 1) were specified to either have a large or a small overlap, which 

was quantified using the Bhattacharyya distance (BD). Up to three distributions were probabilistically mixed 

with equal weights for both overlap scenarios assuming a small (N=60) and large sample size (N=150).

• Bias was calculated as the percentage difference between estimated and true mean preference weights.

• Results are displayed in the left column of Figure 1. The average bias ranged from 1.5%–12.8% across the 

five attributes. As expected, the bias was small (≤5%) in the case of unimodal preferences. In case of large 

overlaps, multimodal Dirichlet distributions collapse, and the standard model (one Dirichlet distribution) 

fitted the joint distribution with small bias (≤5%). 

• However, as distributions (preference clusters) became more distinct, average bias increased to >15% for 

some estimates. 

Table 1. Simulated Dirichlet Distributions

True concentration parameters (𝜶𝟏; 𝜶𝟐; 𝜶𝟑; 𝜶𝟒; 𝜶𝟓)

Overlap 𝒇𝛚|𝟏 𝒇𝛚|𝟐 𝒇𝛚|𝟑

Small (BD: 11.1% – 20.8%) a
(1.0; 2.0; 3.0; 4.0; 5.0)b

(5.0; 4.0; 3.0; 2.0; 1.0) (8.0; 2.0; 10.0; 4.0; 6.0)

Large (BD: 73.7% – 83.9%) a (2.0; 3.0; 3.0; 3.0; 4.0) (2.0; 1.5; 3.0; 5.0; 4.5)

Simulated distributions

Mixture N=50 N=150

Unimodal 𝑓𝜔|1 𝑓𝜔|1

Two distribution mixture c Τ1 2 ∗ 𝑓𝜔|1 + 𝑓𝜔|2 Τ1 2 ∗ 𝑓𝜔|1 + 𝑓𝜔|2

Three distribution mixture c Τ1 3 ∗ 𝑓𝜔|1 + 𝑓𝜔|2 + 𝑓𝜔|3 Τ1 3 ∗ 𝑓𝜔|1 + 𝑓𝜔|2 + 𝑓𝜔|3

a min-max BD across binary comparison; b common concentration parameters across small and large overlap; c simulated once with small and once 

with large overlap (10 simulations in total)

Abbreviation:  BD=Bhattacharyya distance

Box 1. Dirichlet Distribution: Overview

Setup

Assume 𝜔 = 𝜔1; 𝜔2; … ; 𝜔𝐾  are preference weights of 𝐾 attributes that are distributed on the 𝐾 − 1 

simplex, such that 𝜔𝑘 ∈ Ω = 𝜔𝑘 ∈ ℝ𝐾; 𝜔𝑘 > 0; σ𝑘∈ 1;𝐾 𝜔𝑘 = 1 . Here 𝜔 follows a Dirichlet distribution 

with the parameters 𝛼 = 𝛼1; 𝛼2; … ; 𝛼𝐾 .

Density

𝑓𝜔 =
Γ σ𝑘∈ 1;𝐾 𝛼𝑘

ς𝑘∈ 1;𝐾 Γ 𝛼𝑘
ෑ

𝑘∈ 1;𝐾
𝜔𝑘

𝛼𝑘−1
with 𝛼𝑘 > 0

Structure

• Symmetric and unimodal distribution over Ω.

• Fixed correlation of 𝜌𝑘𝑗 = − 𝛼𝑘 Τ𝛼𝑗 [(𝛼0 − 𝛼𝑘)(𝛼0 − 𝛼𝑗)]
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