

Comparative Environmental Impact of Intravenous Versus Oral Chemotherapy in France: A 1,000-Patient Model-Based Assessment

HSD43

Bellier L¹, Duteil E¹, Monnier R¹, Le Dissez C¹
1. PASS, France

Background and objective

- In their 2021 report, the shift project established that the overall healthcare sector is responsible for about 46 million tons of carbon equivalent (CO₂e) in France¹.
- Oncology is one of the main area representing in 2023²:
 - 8.1 M of hospitalizations, and
 - 1.3 M of patients treated including 387,440 with a systemic treatments.
- Two main forms of systemic treatments exist - Intravenous (IV) and oral - either used in monotherapy or in combination.
- As environmental sustainability becomes a priority, it prompts a reflection on the **impact of the administration route (oral vs IV) on carbon emissions and waste production**.

Method

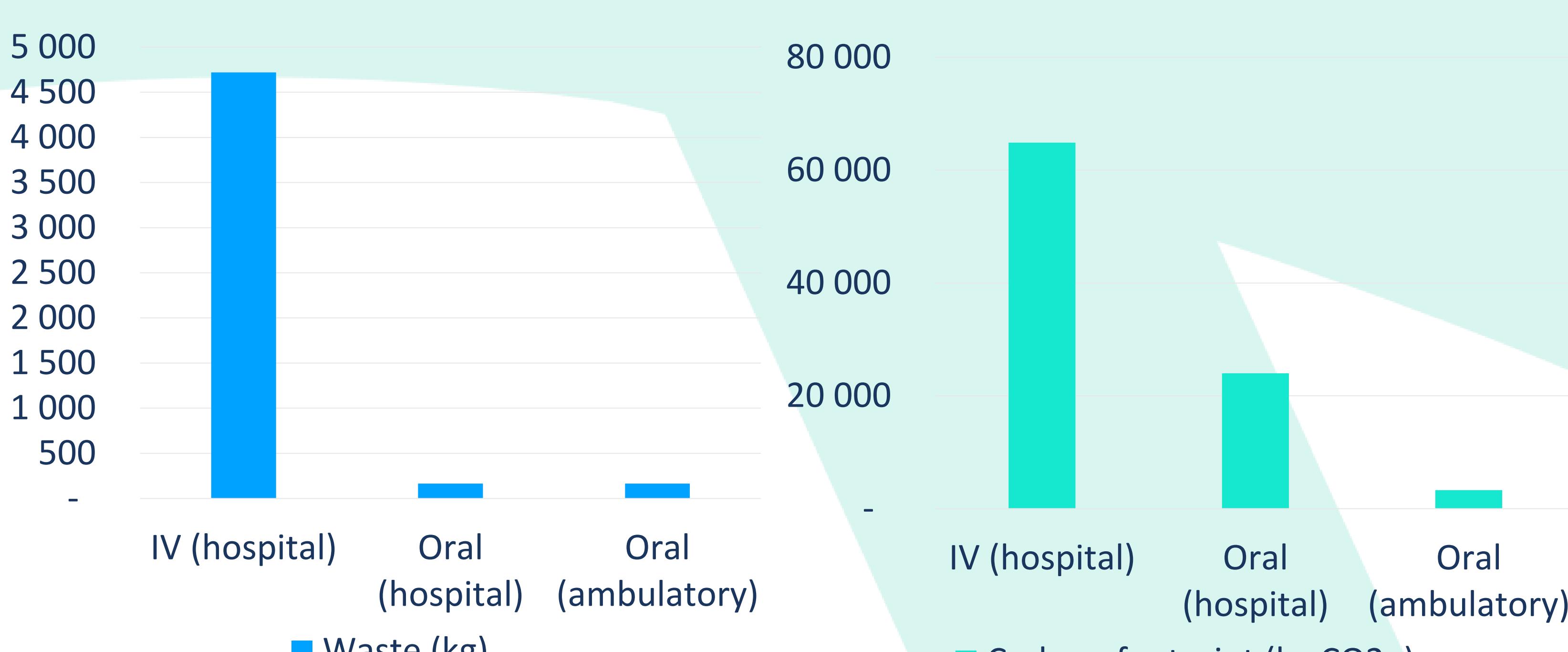
- A model was developed to simulate the patient's treatment pathways and quantify the carbon emissions and the waste production
- It follows for a period of **6 months** a cohort of **1,000 patients** treated under one of the following hypothetical scenarios (Figure 1):
 - IV treatment every 3 weeks ; or
 - Daily oral treatment.

Figure 1. Scenarios tested for patient's pathway

	Prescription	Dispensing	Administration
		At hospital, every 3 weeks	
		At hospital, every month Scenario : dispensed in pharmacy	N/A

Inputs and sources

- The model accounts for transportation (for patients and health care workers), facility operations, excipients, medical supplies, and packaging materials.
- Inputs were sources from institutional reports, public sources, and literature whenever possible (Table 1.)


Table 1. Main sources considered

Carbon emission	Sources
Transportation hospital / home for patients	Distance : PASODOBLE study ³ CO ₂ emissions: report from the French Automobile Manufacturers Committee ⁴
IV administration at hospital	Carebone® database ⁵
<i>*It was assumed that car as the main transportation and an average speed of 50 km/h</i>	
Waste	Sources
IV administration at hospital	Carebone® database ⁵ and WHO report ⁶
Oral drugs packaging	Carebone® database ⁵

Results

- For 1,000, IV chemotherapy generated **4.7 tons** of waste—including hazardous healthcare waste and **65 tons** of CO₂e (Figure 1).
- In contrast, oral therapy produced 170 kg of waste and 24 tons of CO₂e.
- In a scenario where oral therapy is dispensed in an ambulatory setting, an additional 62-ton CO₂e reduction is expected by minimizing travel emissions.

Figure 1. Environmental impact of different chemotherapy

- These estimates are likely conservative, as they do not account for the environmental impact of active pharmaceutical ingredient (API) manufacturing and relied on a minimalistic approach to IV-related materials and actors, excluding, for instance, the reconstitution phase.

This represents a reduction of **4.6 tons of waste and 41 tons of CO₂e** the equivalent to :

- ~ annual carbon footprint of 4/5 average French households
- >275,000 km in a typical gasoline car
- ~10 round-trip flights from Paris to New York for 1 person

Discussion and conclusion

- Oral chemotherapy already offers significant environmental advantages over IV administration when delivered in hospitals.
- Shifting dispensing to ambulatory settings could amplify these benefits, supporting more sustainable and efficient care pathways.
- Further developments to reduce environmental impact include dose optimization of oral formulations.
- While chemotherapy serves as the model, these findings more broadly support the expansion of oral regimens when clinically appropriate, aligning ecological performance with therapeutic value.