

Economic Burden of Generalized Myasthenia Gravis (gMG) in Latin America (LA): a Micro-costing Analysis of Direct Medical Costs (DMCs)

Rugiero, M. F.; Vargas-Cañas, E. S.; Zanotelli, E.; Forero-Botero, C. A.; Coelho, L.; Kanevsky, G. A.; Murasawa, W. H. Y.; Trilles, V. B.; de Oliveira, R. W.

¹Hospital Italiano de Buenos Aires, Argentina; ²Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico; ³Department of Neurology, Facultad de Medicina, Universidad de São Paulo, Brazil; ⁴Fundación Santa Fé de Bogotá, Colombia; ⁵Johnson & Johnson Innovative Medicine, Brazil; ⁶Johnson & Johnson Innovative Medicine, Argentina; ⁷Trinity Life Sciences, USA

Background

- Generalized myasthenia gravis (gMG), a rare autoimmune disease marked by fluctuating muscle weakness, exerts a negative impact on patient's ability to perform daily activities and quality of life
- The frequent disease fluctuations, the variable and unpredictable disease course, and the heterogeneity in response to therapy are important challenges in gMG management, imposing a high burden on patients and caregivers and increasing healthcare resource use (HCRU)¹⁻³
- In Latin America, decision-making in clinical practice and healthcare policy are impacted by the limited treatment options available, and by the lack of evidence on patient profile, treatment patterns, and on HCRU and costs associated with gMG⁴
- A three-step approach comprising a target literature review, a modified Delphi panel with experts, and a micro-costing analysis was used to investigate the individual and societal impact of gMG in Latin America. Diagnosis and treatment challenges were previously reported.⁵ Herein, we report results related to HCRU and costs

Objectives

To assess the economic burden of gMG in Latin America through the estimation of DMCs across the treatment sequence

Methods

Results

Panel participants

- The panel was composed by seven neuromuscular specialists from each of the four countries of interest totaling 28 members
- Physicians profile:
 - Experience time: ranged from 5 to 30 years (median: 12 years)
 - Annual number of gMG patients under care: ranged from 10 to 300 patients (median: 32 patients)

Key estimates used as assumptions for the cost analysis (per country)

	ARG	BRA	COL	MEX
Adult population ¹	36,048,082	173,131,214	41,084,789	97,601,219
gMG prevalence	13,338 (37 cases / 100,000)	34,626 (20 cases / 100,000)	5,875 (14.3 cases / 100,000)	10,736 (11 cases / 100,000)
Diagnosed patients ²	9,470 (71%)	27,008 (78%)	3,408 (58%)	6,227 (58%)
Treated gMG population ²	8,144 (86%)	24,038 (89%)	2,726 (80%)	5,106 (82%)
First treatment*	3,665 (45%)	7,211 (30%)	1,118 (41%)	1,838 (36%)
Second treatment*	3,421 (42%)	10,577 (44%)	1,063 (39%)	2,247 (44%)
Third treatment*	652 (8%)	4,808 (20%)	436 (16%)	664 (13%)
Fourth and subsequent treatments*	407 (5%)	1,442 (6%)	109 (4%)	357 (7%)
AChR+ patients ³	6,761 (83% of cases)	19,471 (81% of cases)	2,317 (85% of cases)	4,340 (85% of cases)

¹Source: World Bank, September 2024. ²Other subtypes (muscle-specific tyrosine kinase [4 to 10%], low-density lipoprotein receptor-related protein [%], and seronegative [8 to 10%]) were also estimated by panelists, but there is generally insufficient access to testing in the region.³ Estimated according to medical experts' perspective.⁴ AChR+: Acetylcholine receptor antibody positive. * As percentage of treated patients

Estimates of HCRU in each country over the past 12 months, pooling all treatment lines

Percentage of patients requiring each of the resources analysed and the mean frequency of utilization

Exacerbations	ARG		BRA		COL		MEX		
	Item	Patients	Mean utilization						
Hospital stay	61%	6 days	41%	8 days	66%	10 days	33%	6 days	
ICU stay	13%	4 days	26%	4 days	31%	5 days	14%	4 days	
IVIg	35%	5*	44%	5*	17%	5*	30%	5*	
PE	11%	5*	22%	5*	44%	6*	14%	5*	
VS	10%	1**	17%	1**	12%	2**	11%	2**	
OM	25%	1**	50%	1**	52%	1**	46%	1**	
Ambulance	30%	1**	12%	1**	35%	1**	20%	1**	
Crises	Item	Patients	Mean utilization						
	Hospital stay	97%	9 days	100%	11 days	93%	13 days	74%	12 days
ICU stay	69%	9 days	100%	7 days	100%	8 days	53%	6 days	
IVIg	52%	5*	51%	5*	27%	5*	52%	5*	
PE	75%	5*	24%	5*	74%	6*	12%	5*	
VS	50%	4**	57%	4**	100%	4**	51%	5**	
OM	97%	2**	72%	1**	96%	2**	64%	2**	
Ambulance	39%	1**	37%	1**	73%	2**	57%	1**	

*Courses per treatment cycle; **Units per episode. ICU, Intensive care unit; IVIg, intravenous immunoglobulin as rescue treatment; OM, oxygen monitoring; PE, plasma exchange as rescue treatment; VS, ventilatory support (non-invasive or invasive mechanical ventilation used during hospitalization).

Key Takeaways

gMG Patients in later treatments present greater resource use and direct costs, placing a significant burden on the healthcare system.

The higher rates of disease exacerbations and crises among patients in later treatments are an important driver in the cost-per-patient, showing the impact of uncontrolled disease.

Patients in later treatments appear to not achieve disease control, highlighting the need for improved disease management strategies