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Simulation Study
• Our simulation study indirectly compared binary outcomes for A vs. B from two single-arm studies. 
• Population imbalance was induced across studies by generating correlated PFs with different means, and 

outcomes were simulated: 1) assuming PFs have the same effect on outcomes for A and B (i.e., SPFA), 
which implies no EM; and 2) relaxing SPFA, thereby inducing weak to strong EM. 

• Bayesian ML-UMR models were fitted using OpenBUGS (3 chains, 2,000 total iterations per chain, 1,000 
burn-in period) to assess the absolute and relative bias and coverage of 95% credible intervals (CrIs) of 
predicted marginal log odds ratios (LORs) in the comparator and index populations.

• The two types of ML-UMR models were evaluated under three scenarios: 1) shared PFs for A and B (i.e., 
no EM); 2) weak violation of SPFA (i.e., weak EM); and 3) strong violation of SPFA (i.e., strong EM). 

• Table 1 summarizes the assumptions and simulation settings settings for this study.
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Background
• Imbalances in clinically relevant baseline characteristics (i.e., treatment effect modifiers and/or 

prognostic factors [PFs]) across study populations may lead to biased results in unadjusted indirect 
comparisons (e.g., network meta-analysis). 

• Multilevel network meta-regression (ML-NMR)1 enhances network meta-analysis by statistically 
adjusting for effect modification (EM) in connected networks.
— ML-NMR is the most flexible anchored population-adjusted indirect comparison (PAIC) method, as it 

enables transporting effect estimates to any target population of interest and is capable of comparing 
any number of treatments.

• Existing PAIC methods for disconnected networks (i.e., unanchored matching-adjusted indirect 
comparison [MAIC] and simulated treatment comparison [STC]), however, are limited to pairwise 
comparisons and cannot transport estimates beyond the comparator population. 

Objectives
• To address this gap, we introduce multilevel unanchored meta-regression (ML-UMR)—a novel 

extension of ML-NMR for unanchored comparisons—and assess its performance via 
simulation.

Methods
ML-UMR: A Novel Extension of ML-NMR
• We introduced two types of Bayesian ML-UMR models (Figure 1) and motivated the application with 

simulated examples of pairwise PAICs for treatment A (index) vs. B (comparator). Here, patient-level 
data (PLD) are available for A, while only aggregate-level data (ALD) are reported for B. 
1. The first type of ML-UMR model, invoking the shared PF assumption (SPFA), implied there is 

treatment effect homogeneity at the individual level (i.e., no EM) for A vs. B. 
a. Fitted using PLD for A and ALD for the overall population for B.

2. The second type of ML-UMR model, relaxing SPFA, allowed for potential treatment effect 
heterogeneity at the individual level (i.e., EM) for A vs. B. 
a. Fitted using PLD for A and ALD for non-overlapping subgroups that partition the overall 

population for B (e.g., four subgroups formed by the interactions between PFs 𝑋𝑋1 and 𝑋𝑋2 in 
simulated examples).

• The general formulas for an ML-UMR indirectly comparing A vs. B are presented in Figure 1, which 
extend straightforwardly to analyses involving additional treatments and/or multiple studies per 
treatment.

Table 1. Assumptions for Simulation Study
Parameter Assumption
Monte Carlo replications 500

Sample sizes Equal samples of 𝑛𝑛=1,000 for each trial

PFs Two binary variables (𝑋𝑋1,𝑋𝑋2) with moderate correlation (0.5)
Index: 𝑋𝑋1 = 𝑋𝑋2 = 0.3
Comparator: 𝑋𝑋1 = 𝑋𝑋2 = 0.7

Prognostic strength of 𝑋𝑋1* Scenarios 1-3: 𝛽𝛽1,𝐴𝐴 = 𝛽𝛽1,𝐵𝐵 = −1

Prognostic strength of 𝑋𝑋2* Scenario 1: 𝛽𝛽2,𝐴𝐴 = 𝛽𝛽2,𝐵𝐵 = −2
Scenario 2: 𝛽𝛽2,𝐴𝐴 = −2, 𝛽𝛽2,𝐵𝐵= −1.75
Scenario 3: 𝛽𝛽2,𝐴𝐴 = −2, 𝛽𝛽2,𝐵𝐵= −1

Baseline outcome* 𝛼𝛼𝐴𝐴 = 1; 𝛼𝛼𝐵𝐵 = 0.25

Abbreviation: PF = prognostic factor
*Modeled on the logit scale

Figure 1. ML-UMR Model Comparing A vs. B

Abbreviations: EM = effect modification; LOR = log odds ratio; SPFA = shared prognostic factor assumption
The absolute bias represents the difference between the average prediction of the ML-UMR model and the true treatment effect (ignoring the direction of 
error), where values closer to 0 indicate that the average model predictions more closely reflect reality and large values indicate a systematic error with 
model predictions (i.e., over or under prediction of the true effect). Note, the predicted effect in the index is biased when SPFA is incorrectly assumed in 
the model, but the estimate in the comparator population has negligible bias. This is because the regression coefficients for PFs are more heavily 
influenced by the PLD for A, and do not generalize for B outside of the comparator population. 

Figure 2. Absolute Bias of LOR

Conclusions
• This study demonstrates that the ML-NMR framework can be extended for unanchored indirect 

comparisons. 
• In the pairwise unanchored setting, the SPFA is the fundamental assumption for transporting 

effect estimates from the comparator population to a different target population, such as the 
index.
— This is analogous to the shared effect modifier assumption (SEMA) in anchored PAICs. SPFA 

is a stronger assumption than SEMA, and thus it may be more difficult to achieve 
transportability in unanchored analyses. 

— The SPFA may be relaxed by leveraging comparator data for appropriate subgroups and/or 
multiple comparator studies2 or clinical expert opinion. Stratified analyses could also be 
explored. Further research is required in this area.

— Obtaining the data necessary to relax SPFA will be challenging in practice, as the reporting of 
comparator data is often limited.

• ML-UMR effectively simplifies to unanchored STC if two treatments are being compared in the 
comparator population.
— Consistent with the findings of Ren et al.,3 effect estimates in the comparator population were 

unbiased if all PFs were included in the model, regardless if the SPFA is violated.
• Unlike MAIC and STC, ML-UMR allows transporting relative effect estimates to any target 

population under certain assumptions (e.g., the SPFA may be required if sufficient data are not 
reported for comparators), can compare any number of treatments, and can synthesize multiple 
studies per treatment, but it remains subject to strong limitations inherent to unanchored 
comparisons.
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Figure 3. Coverage of 95% CrIs for LOR

Abbreviations: CrI = credible interval; EM = effect modification; LOR = log odds ratio; SPFA = shared prognostic factor assumption
Empirical coverage probabilities of estimated 95% CrIs for LORs. Estimates within the shaded region did not significantly differ from the nominal 
confidence level of 95%. Note, the assumed samples sizes were large in the simulation study (n=1,000 for each arm) and other simplifying assumptions 
were imposed, which may contribute to the observed coverage probabilities. 

Abbreviations: ML-UMR = multilevel unanchored meta-regression; SPFA = shared prognostic factor assumption
Where 𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴 are individual- and aggregate-level distributions (e.g., Bernoulli and Binomial in simulations), 𝜃𝜃 represents the mean outcome, 𝒙𝒙 is a 
vector of PFs, 𝜷𝜷𝑃𝑃𝑃𝑃 is a vector of regression coefficients for PFs, 𝛼𝛼 is the baseline outcome for treatments 𝐴𝐴 and 𝐵𝐵, 𝑖𝑖 is the number of individuals in the 
index study (A), 𝑧𝑧 is an indicator for the mutually exclusive subgroups (for each possible combination of PFs) for 𝐵𝐵. Note the individual-level and 
aggregate-level components of ML-UMR presented here are for a simple pairwise PAIC of A vs. B. These formulas can be extended and written more 
generally to handle three or more treatments and multiple studies per treatment.
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Results
Simulation Study
• ML-UMR models invoking SPFA accurately predicted LORs for A vs. B in the comparator population 

regardless of the true EM strength (|bias|<0.009 [<6.4%] and 94.8%–96.0% coverage) (Figure 2 and 
Figure 3). 

• The predicted LORs for A vs. B in the index population were unbiased in the absence of EM and 
relatively robust to weak EM (bias=-0.06 [-11%]; coverage=93%); a high degree of bias (-0.29 [-67%]) 
was observed, however, when EM was strong. 

• Relaxing SPFA in the ML-UMR model resulted in accurate LORs in both the index and comparator 
populations across all scenarios: bias<0.007 [<1.5%] and 93.4%–95.6% coverage. 
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