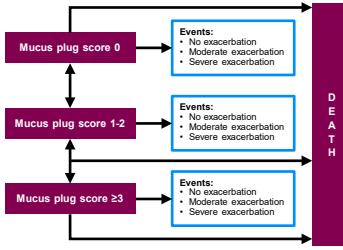


Impact of Mucus Plugs on the Health Economic Burden in Chronic Obstructive Pulmonary Disease Patients

Juan Pablo Castiblanco Salgado,¹ Josefine Persson,¹ Lise Retat,² Suzan Serip,² Mikael Svensson³

¹BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden; ²BioPharmaceuticals, AstraZeneca, Barcelona, Spain; ³School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden

EE537

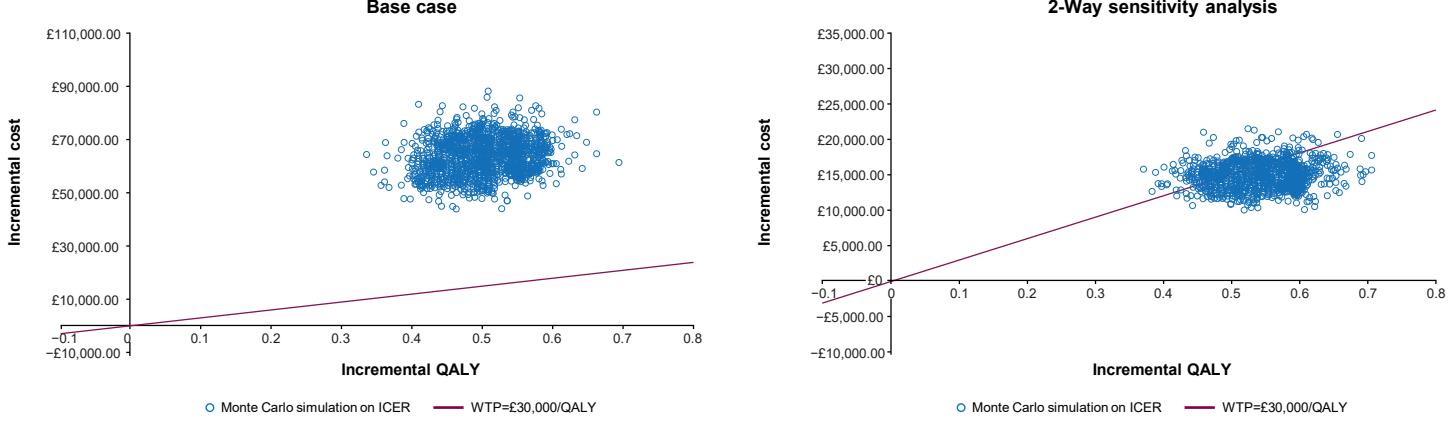

Why did we perform this research?

- Between 41–67% of patients with chronic obstructive pulmonary disease (COPD) have airway mucus plugs.^{1,2}
- The presence of mucus plugs is associated with increased mortality, frequent exacerbations, and poor quality of life (QoL).^{1,3}
- The objective of this study was to estimate the potential cost-effectiveness of an intervention aimed solely at reducing mucus plugs among adult patients with COPD receiving triple inhaled therapy.

How did we perform this research?

- A Markov cohort model was developed featuring 1-month cycles and 4 health states: 3 representing lung segment mucus plug scores (0, 1-2, and ≥ 3)¹ and the fourth representing death.
- Baseline characteristics for the simulated cohort were derived from the COPDGene[®] study⁴; standard of care (SoC) transition probabilities were based on published data.⁵
- The model used a lifetime horizon from a UK national healthcare perspective and compared SoC (ie, triple inhaled therapy) with a hypothetical intervention (ie, a biologic treatment for COPD).
- Disease state utilities⁶ and healthcare resource utilization and related costs⁷ were based on published data; the hypothetical intervention was priced based on drug acquisition costs for a biologic for COPD in the UK.^{8,9}
- The base case scenario assumed a 50% reduction in mucus plugs; a 2-way sensitivity analysis assuming 75% reductions in drug acquisition costs and mucus plugs was also conducted.

Figure 1. Markov model structure


Notes: Purple boxes represent the 4 health states: mucus plug scores 0, 1-2, or ≥ 3 , and death. Blue boxes represent the events a patient can have in each mucus plug-related health state: no exacerbation, moderate exacerbation, or severe exacerbation.

What did we find?

Table 1. Cost-effectiveness comparison of SoC vs a biologic treatment for COPD: base case (50% reduction in mucus plug scores) and 2-way sensitivity analysis (75% reduction in drug acquisition costs and mucus plug scores)

Measure	Base case			2-Way sensitivity analysis		
	Biologic treatment	SoC	Difference	Biologic treatment	SoC	Difference
QALY gains	7.06	6.56	+0.50	7.10	6.56	+0.54
Cost, £	87,532	24,319	-63,213	39,057	24,319	-14,767
Exacerbation and disease management cost, £	24,017	25,631	+1,613	23,922	25,631	+1,708
ICER, £/QALY	—	—	126,249	—	—	27,338

Figure 2. Cost-effectiveness planes: base case (50% reduction in mucus plug scores) and sensitivity analysis (75% reduction in drug acquisition costs and mucus plug scores)

Notes: Cost-effectiveness plane for SoC vs a biologic treatment for COPD (base case and 2-way sensitivity analysis). Monte Carlo simulation results with 1000 repetitions are shown as blue circles. The WTP of £30,000/QALY is represented as a purple line; values located to the northwest of the line indicate non-cost-effectiveness under the stated WTP, and values located to the southeast of the line are cost-effective.

- In the base case, compared with SoC, an intervention to reduce mucus plugs by 50% generated quality-adjusted life-year (QALY) gains of 0.50, an incremental cost of £63,213, and saved £1,613 in exacerbation-related and disease management-related healthcare costs; however, the incremental cost-effectiveness ratio (ICER) was £126,249/QALY, which was above the UK willingness-to-pay (WTP) threshold of £30,000/QALY.
- In the 2-way sensitivity analysis, compared with SoC, an intervention to reduce mucus plugs by 75% generated QALY gains of 0.54, an incremental cost of £14,767, and saved £1,708 in exacerbation-related and disease management-related healthcare costs; the ICER was £27,338/QALY, which was below the UK WTP threshold of £30,000/QALY.

How might this impact current clinical practice?

- This model indicates that a hypothetical intervention targeting mucus plug reduction may reduce associated outcomes (ie, exacerbations and mortality) and improve QoL, which could result in significant healthcare cost savings and QALY gains.

- These results address a gap in current health economic models and suggest that mucus plug reduction should be incorporated into models assessing the cost-effectiveness of biologics for COPD.

E-poster

Supplementary material

Scan QR code to obtain a copy of these materials. Materials obtained through this QR code are for personal use only and may not be reproduced without permission from the authors of this poster.

Corresponding author email address: josefine.persson1@astrazeneca.com

Poster presented at ISPOR EU 2025; 9–12 November 2025; Glasgow, UK

References

1. Diaz AA, et al. *JAMA*. 2023;329(21):1832-1839.
2. Duncan EM, et al. *Am J Respir Crit Care Med*. 2021;203(8):957-968.
3. Kim V, et al. *Am J Respir Crit Care Med*. 2023;207:A2858.
4. Wan E, et al. *Am J Respir Crit Care Med*. 2024;211(5):814-822.
5. Singh D, et al. *Eur Respir J*. 2025;61(6):2402231.
6. Salant N, et al. *COPD*. 2024;21(1):238-238.
7. de Nigris E, et al. *Chron Obstruct Pulm Dis*. 2022;17:2887-3000.
8. National Health Service (2024). National Cost Collection for the NHS: 2023/24 National Cost Collection data. Accessed April 1, 2025. <https://www.anglia.nhs.uk/costing-in-the-nhs/national-cost-collection/>
9. National Institute for Health and Care Excellence 2025: Drugs A to Z. Accessed April 1, 2025. <https://bnf.nice.org.uk>

Abbreviations

COPD, chronic obstructive pulmonary disease; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; QoL, quality of life; SoC, standard of care; WTP, willingness to pay.

Acknowledgements

This study was sponsored by AstraZeneca. Medical writing was provided by Magdalene Michael, PhD, of Evident Value & Access, a part of Evident Medical Communications, funding for which was provided by AstraZeneca.

Disclosures

JP was an employee of AstraZeneca during the time of study. JP, LR, and SS are employees of AstraZeneca and may hold stocks/shares. MS has nothing to disclose.