

Emily Foreman,¹ Oliver Pople,¹ Bryony Langford,¹ Laura Sawyer¹

¹Symmetron Limited, London, England • Poster inquiries: eforeman@symmetron.net • www.symmetron.net • Presented at ISPOR EU 2025 Glasgow Annual Meeting

Background and Objectives

- The use and potential of Large Language Models (LLMs) continues to grow within health economics and outcome research.
- Individual Patient-Level data (IPD) are a valuable, but often difficult to obtain commodity in healthcare research. For this reason, it might be of interest to utilise LLMs to generate realistic IPD for use in research projects.
- The objective of this research was to explore the strengths and limitations of using LLMs to generate IPD.

Figure 1: LLM prompts to obtain IPD, using incrementally more information

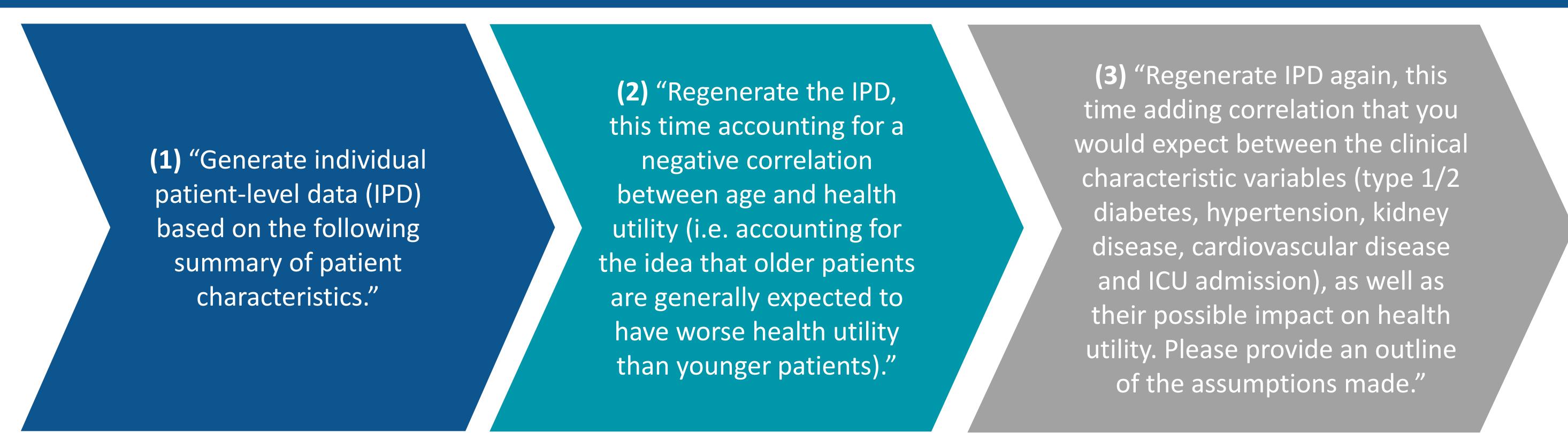


Figure 2: Prompt for the LLM to create IPD based on its own assumptions

(4) "Generate individual patient-level data (IPD) based on the following summary of patient characteristics. Please make and apply sensible assumptions, for example any correlations that you would expect to see between the included variables, as well as restrictions on sensible ranges for each variable. Please outline the assumptions that have been made."

Abbreviations: IPD, individual patient-level data; LLM, large language model; ICU, intensive care unit.

Method

1. Simulating IPD in R (v4.5.0)¹:

- A simulated dataset (SIM-1) was generated for 1000 patients, including health utility and the following list of demographic and clinical characteristics:
 - Sex, age, marital status, educational level, employment status, residence, type 1 diabetes, type 2 diabetes, hypertension, kidney disease, cardiovascular disease and ICU admission.
- Realistic data characteristics were incorporated into the data; for example, a negative correlation between the age and health utility variables.

2. Creating LLM-generated IPD that approximate the SIM-1 data:

- The SIM-1 data was summarised (using mean and SD for continuous variables and counts and percentage for binary variables), and these summary statistics were entered into an LLM (ChatGPT 5.0) to obtain an LLM-generated approximation of the SIM-1 data (LLM-1), following prompt (1) in Figure 1.²
- Further LLM-generated data (LLM-2 and LLM-3) were obtained by giving incrementally more information to the LLM via prompts (2) and (3) in Figure 1, to establish whether a better approximation to SIM-1 could be made.

3. The LLM-generated datasets were compared to SIM-1 in R using the following methods:

- Comparison of summary statistics via standardised mean difference.
- Plots used to visualise correlation of variables.
- Propensity score³:
 - Defined as the probability of dataset assignment conditional on all observed characteristics; used to determine how well each LLM dataset emulated SIM-1.
 - For sufficiently similar datasets, you would expect to not be able to predict the source of each row of data (i.e. whether it came from SIM-1 or from an LLM-generated dataset), from the characteristic values. This scenario would therefore yield a propensity score close to 0.5 for each row of data.
 - Using ROC (receiver operating characteristics) analysis, the area under the curve (AUC) was also calculated as an overall performance indicator; where AUC close to 0.5 suggests high similarity between datasets.
 - Propensity score was visualised via a mirrored histogram plot of propensity scores.
- Prompt (4) was entered into the LLM independently; requiring the LLM to make its own assumptions about the data based on the summary statistics and return an LLM-generated dataset using these assumptions (LLM-4). The aim of this approach was to assess the ability of an LLM to make clinically reasonable assumptions (e.g. about correlations between variables).

Table 1. Summary statistics for continuous variables in each dataset

	SIM-1 data (N=1000)		LLM1 data (N=1000)		LLM2 data (N=1000)		LLM3 data (N=1000)		LLM4 data (N=1000)	
	Mean (SD)	Mean (SD)	SMD	Mean (SD)	SMD	Mean (SD)	SMD	Mean (SD)	SMD	
	Age	44.27 (10.95)	44.69 (10.37)	0.039	44.15 (10.25)	0.011	43.91 (10.34)	0.034	44.14 (10.53)	0.012
Utility Score	0.90 (0.12)	0.87 (0.08)	0.294	0.89 (0.09)	0.109	0.88 (0.09)	0.218	0.90 (0.10)	0.023	

Abbreviations: SD, standard deviation; SMD, standardised mean difference.

SMD is calculated for each LLM-generated dataset versus the corresponding variable in the SIM-1 data.

Table 2. Summary of the strengths and weaknesses of LLMs for IPD generation

Strengths	Weaknesses
<ul style="list-style-type: none"> Able to approximate IPD where actual data are unavailable. LLMs can reconstruct IPD distributions that are fairly consistent with the original, given summary statistics. LLMs can accelerate the process of reconstruction, and do not rely on programming knowledge. Reduced cost compared to manual simulation, or gaining access to original data. Can allow LLM to make clinical assumptions and simulate inter-variable dependencies based on learnings from literature, given a specific indication or population type. 	<ul style="list-style-type: none"> Under normal circumstances, validating LLM-generated IPD against 'real' IPD, as done in this research, would not be feasible since 'real' IPD would not be available. Data produced by an LLM would therefore need to be sense checked before use (e.g. checking variable relationships) since, as demonstrated in this research, LLM output should not always be taken at face value. Lack of reproducibility: LLM reconstruction processes can be opaque, posing a challenge for regulatory acceptance. Research also showed variability in LLM response to identical prompts when repeated. Lack of transparency on the data that the LLM model has been trained on. May cause issues if model is trained on biased medical literature, for example, leading to the need to consult with clinicians to validate the assumptions of the LLM. Lacks statistical rigour of traditional IPD reconstruction methods, which can provide quantifiable uncertainty and distributional control.

References: (1) R Core Team (2025). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. <<https://www.R-project.org/>>. (2) OpenAI. (2025). ChatGPT (GPT-5) [Large language model]. OpenAI. <https://chat.openai.com/> (3) Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. *Multivariate Behav Res*. 2011 May;46(3):399-424. doi: 10.1080/00273171.2011.568786. Epub 2011 Jun 8. PMID: 21818162; PMCID: PMC3144483. (4) Koliopoulos G, Ojeda F, Ziegler A. A Simple-to-Use R Package for Mimicking Study Data by Simulations. *Methods Inf Med*. 2023 Sep;62(3-04):119-129. doi: 10.1055/a-2048-7692. Epub 2023 Mar 7. PMID: 36882158; PMCID: PMC10462429.

Acknowledgements: Thanks to Corinne LeReun for additional advice and statistical support.

Declaration of funding: This project has been funded in full by Symmetron Limited.

Conclusions

- This research demonstrated the ability of an LLM to generate IPD when given summary statistics but showed that the IPD will not always be constructed realistically (e.g. considering inter-variable dependencies), unless explicitly asked to do so.
- LLMs can make and apply clinical assumptions and variable correlations when asked to do so, providing the ability to reconstruct IPD without consulting clinical experts.
- The issue, however, remains how to validate LLM-generated IPD without access to corresponding 'real' data and/or input from clinicians.
- Given the possible limitations of LLMs to generate IPD, analyses using LLM-generated IPD is unlikely to be accepted by healthcare regulators for decision-making and may therefore be limited to use in exploratory/sensitivity analyses until further research is conducted and formal guidance issued.

Abbreviations: AUC, area under the curve; LLM, large language model.