

# CREST Physician Experience Survey—Evaluating the Impact of Time and Effort of Treatment Administration in Non-Muscle Invasive Bladder Cancer (NMIBC)

Anthony Eccleston, MSc,<sup>1</sup> Leo Chen, MPH,<sup>2</sup> Joe Brown, BSc,<sup>3</sup> Julia Brinkmann, MD, MBA,<sup>4</sup> Sanjana Chandrasekar, MPH,<sup>2</sup> Jane Chang, MPH<sup>2</sup>

<sup>1</sup>Pfizer Inc, Surrey, UK; <sup>2</sup>Pfizer Inc, New York, NY, USA; <sup>3</sup>ICON plc, Blue Bell, PA, USA; <sup>4</sup>Pfizer Pharma GmbH, Berlin, Germany



## Conclusions

- Despite a small sample size, our findings suggest that among specialists, urologists will continue to lead diagnosis and treatment selection in high-risk (HR)-NMIBC.
- Overall, subcutaneous (SC) sasanlimab plus Bacillus Calmette-Guerin (BCG) was easier to administer and required less effort to schedule compared with intravenous (IV) programmed cell death-ligand 1 (PD-L1) inhibitor plus BCG; the management of adverse events (AEs) were similar for both therapies.

- Total treatment time was notably lower for SC sasanlimab plus BCG compared with IV PD-(L1) inhibitor plus BCG, and respondents expect estimated total administration time to be shorter with SC sasanlimab in the real-world setting compared with a clinical trial.
- Pending approval, SC sasanlimab may offer a quicker, more convenient treatment option versus other IV administered treatments, and potentially save time, effort, and resource costs for healthcare systems.

## Background

- Bladder cancer is one of the most common types of cancer worldwide, with more than 600,000 cases reported in 2021<sup>1</sup>; approximately 75% of cases are NMIBC at diagnosis,<sup>2</sup> among which, a substantial portion are classified as HR.<sup>3</sup>
- A retrospective analysis of 1621 patients with NMIBC suggests that approximately 45% of patients are classified as HR according to the European Association of Urology risk stratification.<sup>3</sup>
- The standard of care for HR-NMIBC is transurethral resection of the bladder tumor (once per week for 6 weeks) followed by intravesical BCG induction (6 weekly doses) and 1–3 years of maintenance BCG.<sup>4</sup>
- Approximately 40% of patients experience disease progression or recurrence at 24 months, with unfavorable prognosis and limited treatment options.<sup>5–7</sup>
- Sasanlimab, a new SC programmed cell death protein 1 (PD-1) inhibitor, with BCG is in development for the treatment of BCG-naïve HR-NMIBC (CREST trial, NCT04165317).<sup>8</sup>
- Sasanlimab with BCG induction and maintenance was found to prolong event-free survival with a hazard ratio of 0.68.<sup>8</sup>
- We surveyed CREST investigators, who were familiar with BCG and sasanlimab and who may also have had experience with IV PD-(L1) inhibitor therapy from other investigational trials.
- The primary objective was to better understand the time and effort required to treat HR-NMIBC with BCG and either SC sasanlimab or an IV PD-(L1) inhibitor, particularly in terms of treatment setting and healthcare professional involvement.

## Methods

- An online survey was conducted among principal investigators who had treated ≥3 patients with BCG only and ≥3 patients with combination SC sasanlimab and BCG.
- Survey questions were developed via five 60-minute cognitive interviews with 4 urologists and 1 oncologist conducted between April 24, 2023, and May 5, 2023.
- A 23-item online survey available between June 2023 and December 2024, distributed in 6 languages to active investigators, covered questions on diagnosis, treatment selection, and management across both clinical trial and real-world settings.
- Findings were reported for SC sasanlimab plus BCG and IV PD-(L1) inhibitor plus BCG. BCG monotherapy is provided, where appropriate, to provide proper context.

### Electronic Poster

Click or scan this quick response (QR) to download this poster along with associated material.  
To request permission or to ask questions about the poster, please contact Presenting Author: Leo Chen, MPH; Email: Leo.Chen@pfizer.com

**References:** 1. International Agency for Research on Cancer. GLOBOCAN 2022 Bladder Fact Sheet 2022. Available at: <https://gco.iarc.who.int/media/globocan/factsheets/cancers/30-bladder-fact-sheet.pdf>. Accessed September 9, 2025. 2. Grabe-Heyne K, et al. *Front Oncol*. 2023;13:1170124. 3. Suh J, et al. *Investig Clin Urol*. 2021;62(4):408–415. 4. National Comprehensive Cancer Network. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Bladder Cancer, version 1.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN does not warrant any of its kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way. Accessed August 25, 2025. 5. Kamat AM, et al. *J Clin Oncol*. 2016;34(16):1935–1944. 6. Thiel T, et al. *World J Urol*. 2019;37(1):155–163. 7. Topuz B, et al. *Rev Esp Quimioter*. 2021;34(4):383–386. 8. Steinberg GD, et al. *Future Oncol*. 2024;20(14):891–901.

**Acknowledgments:** The authors wish to thank the patients and their families, the investigators, and the site personnel who participated in this study. This study was sponsored by Pfizer Inc (New York, NY, USA). Medical writing assistance was provided by Nestor G. Davila, PhD, of ICON (Blue Bell, PA, USA), and funded by Pfizer.

**Disclosures:** AE, LC, J Brinkmann, SC, and JC are employees of Pfizer and may own stock or other ownership interests. J Brown is an employee of ICON, which is a paid consultant to Pfizer Inc in connection with the development of this poster.

## Results

- Globally, 25 investigators (20 urologists and 5 oncologists) participated in the survey; of these, 16 had experience with IV PD-(L1) inhibitor (Table 1).
- Respondents were enrolled from 10 different countries, and most (60%) held positions at academic/teaching hospitals.

Table 1. Population Demographics

| Demographic                | n (N=25) |
|----------------------------|----------|
| Specialties                |          |
| Urology                    | 20       |
| Oncology                   | 5        |
| Countries*                 |          |
| Europe                     | 16       |
| United States              | 6        |
| Other                      | 3        |
| Position                   |          |
| Academic/teaching hospital | 15       |
| Private practice/clinic    | 9        |
| Nonacademic hospital       | 1        |
| Average years in practice  | 15       |

\*Europe includes France (n=2), Germany (n=2), Italy (n=1), Poland (n=3), Spain (n=5), and United Kingdom (n=3); Other includes Australia (n=1), Canada (n=1), and Republic of Korea (n=1).

- Among respondents (N=25), urologists were identified as the primary decision-makers for both patient diagnosis (93%) and treatment selection (81%), whereas oncologists played a lesser role (7% for each).
- In a real-world setting, urologists and urology nurses are expected to treat and manage a majority of NMIBC, with medical assistants, nurse practitioners, and physician assistants also having a greater role in routine care, patient support, and administrative tasks outside of a clinical trial (Table 2).

Table 2. Roles Involved in Disease and Treatment Management\* of HR-NMIBC†

| Role                 | Time in Clinical Trial (Mean), %<br>n=25 | Time Outside Clinical Trial (Mean), %<br>n=25‡ |
|----------------------|------------------------------------------|------------------------------------------------|
| Urologist            | 48                                       | 68                                             |
| Urology nurse        | 20                                       | 26                                             |
| Oncologist           | 17                                       | 14                                             |
| Clinical coordinator | 13                                       | 0                                              |
| Oncology nurse       | 12                                       | 7                                              |
| Infusion nurse       | 10                                       | 8                                              |
| Medical assistant    | 4                                        | 8                                              |
| Nurse practitioner   | 3                                        | 6                                              |
| Physician assistant  | 1                                        | 9                                              |
| Other                | 0                                        | 0                                              |

HR-NMIBC, high-risk nonmuscle invasive bladder cancer.

Light blue, increase ≥3%; yellow, neutral 2%; red, decrease ≥3% relative to clinical trial.

\*Time involved with ongoing treatment, administration, and patient management of patients with HR-NMIBC.

†When multiple roles share responsibilities or contribute to the same outcome, the sum of their individual percentage contributions can exceed 100%.

‡Data of 1 individual were removed because they indicated involvement of a clinical coordinator in the same capacity as during a clinical trial and were therefore considered inaccurate.

- For the administration of SC sasanlimab and IV PD-(L1) inhibitor therapy, the role of healthcare professionals varied, with nurses expected to have a greater role outside of a clinical trial (Table 3).

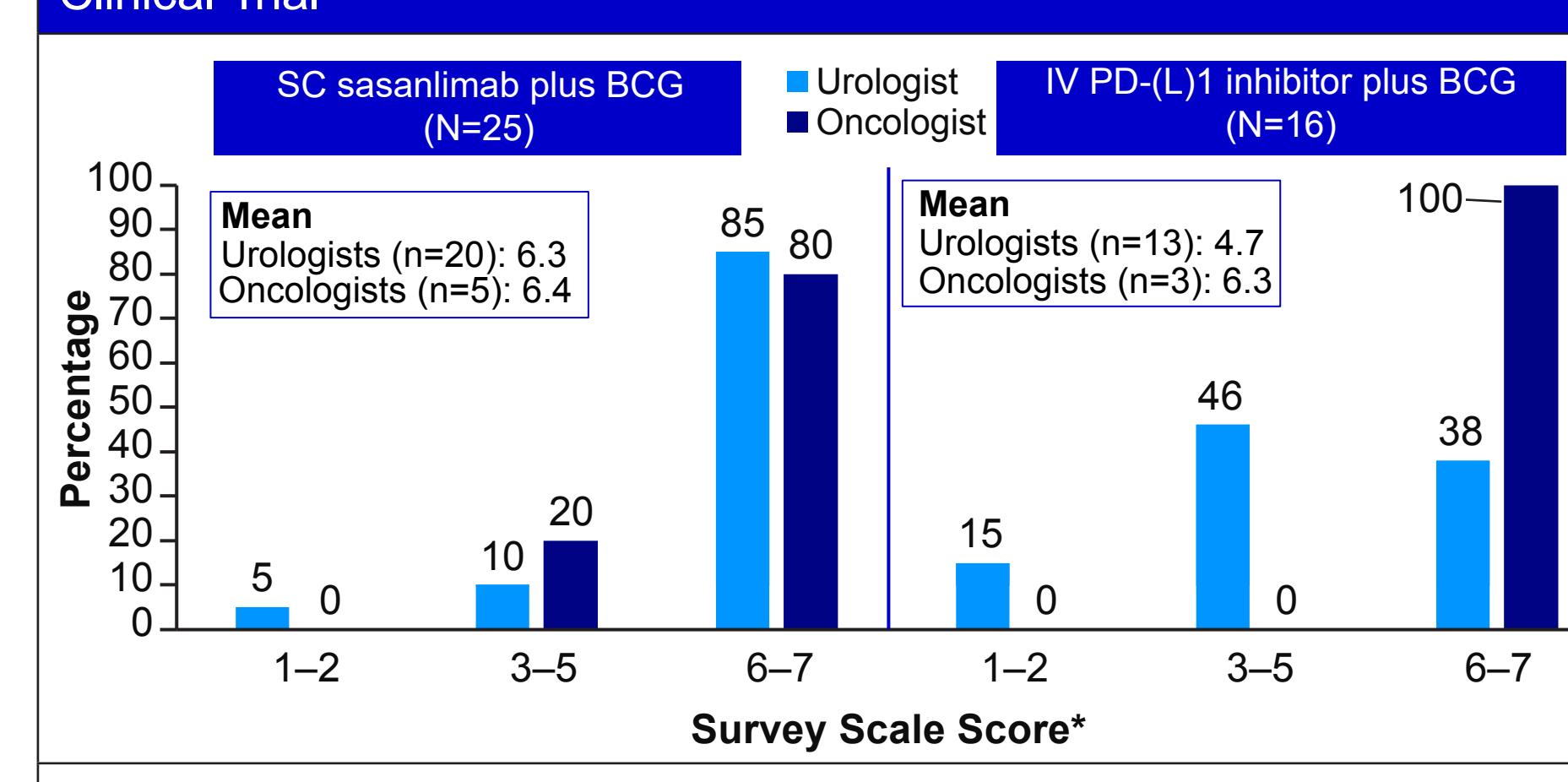
Table 3. Practitioner Roles Involved in Administering Therapy in the Clinical Trial and Real-World Setting\*

| Role                 | Clinical Trial, %        |                                    |                                 | Real World, %            |                                    |                                 |
|----------------------|--------------------------|------------------------------------|---------------------------------|--------------------------|------------------------------------|---------------------------------|
|                      | SC sasanlimab,<br>(n=25) | IV PD-(L1)<br>inhibitor,<br>(n=16) | BCG mono-<br>therapy,<br>(n=25) | SC sasanlimab,<br>(n=22) | IV PD-(L1)<br>inhibitor,<br>(n=13) | BCG mono-<br>therapy,<br>(n=22) |
| Oncologist           | 18                       | 26                                 | 4                               | 15                       | 31                                 | 3                               |
| Urologist            | 37                       | 27                                 | 45                              | 35                       | 25                                 | 45                              |
| Nurse practitioner   | 4                        | 3                                  | 4                               | 5                        | 4                                  | 5                               |
| Oncology nurse       | 14                       | 18                                 | 11                              | 21                       | 26                                 | 12                              |
| Urology nurse        | 19                       | 8                                  | 38                              | 24                       | 5                                  | 40                              |
| Infusion nurse       | 9                        | 28                                 | 1                               | 10                       | 35                                 | 1                               |
| Physician assistant  | 0                        | 0                                  | 4                               | 0                        | 0                                  | 9                               |
| Clinical coordinator | 10                       | 9                                  | 7‡                              | 0                        | 0                                  | 0‡                              |
| Medical assistant    | 1                        | 0                                  | 3                               | 5                        | 0                                  | 6                               |
| Other                | 0                        | 0                                  | 0                               | 0                        | 0                                  | 0                               |

BCG, Bacillus Calmette-Guerin; IV, intravenous; PD-(L1), programmed cell death-ligand 1; SC, subcutaneous.

Bolded values represent the top 3 roles for each treatment and setting. Light blue, increase ≥3%; yellow, neutral 2%; red, decrease ≥3% relative to clinical trial.

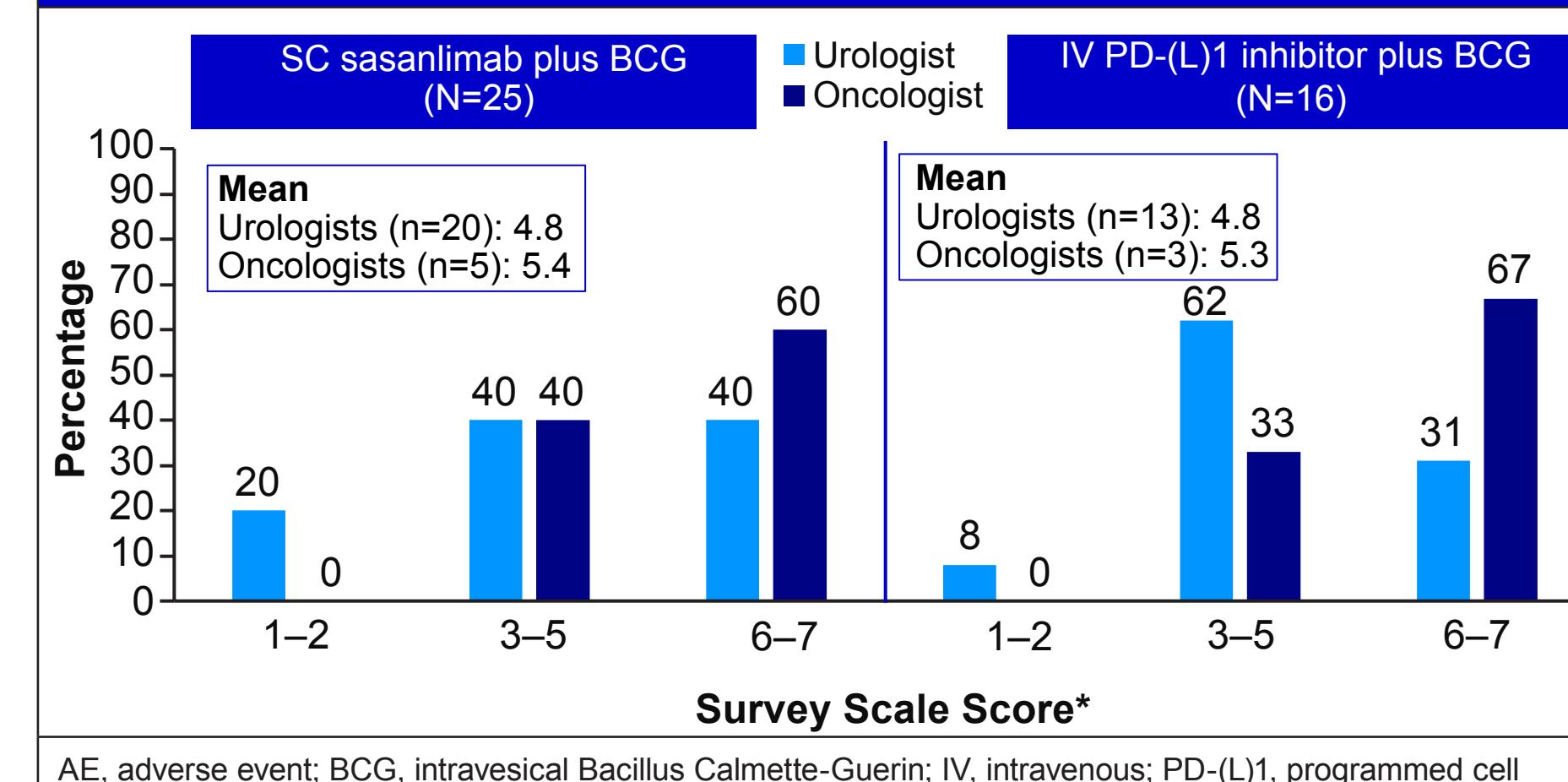
†When multiple roles share responsibilities or contribute to the same outcome, the sum of their individual percentage contributions can exceed 100%.


‡Respondent estimates of practitioner roles in real-world setting. Data of 3 individuals were removed because they indicated involvement of a clinical coordinator in the same capacity as during a clinical trial and were therefore considered inaccurate.

\*Statistical significance between means, as determined by a paired t test with a 90% confidence interval and a significance level of 0.1.

- Unlike this clinical trial setting in which patients are primarily treated in an academic setting, respondents expect a greater proportion of patients in the real-world setting to be treated with SC sasanlimab plus BCG in a community hospital or clinic.
- In general, 52% of respondents reported SC sasanlimab plus BCG required little to no effort to schedule a patient, whereas 88% of respondents found IV PD-(L1) inhibitor plus BCG required moderate to significant effort to schedule.

- Urologists found that administering SC sasanlimab plus BCG was easier than administering IV PD-(L1) inhibitor plus BCG, whereas oncologists found that administering IV PD-(L1) inhibitor plus BCG or SC sasanlimab plus BCG was similar (Figure 1).
- Overall ease of AE management was similar for both treatments (Figure 2).

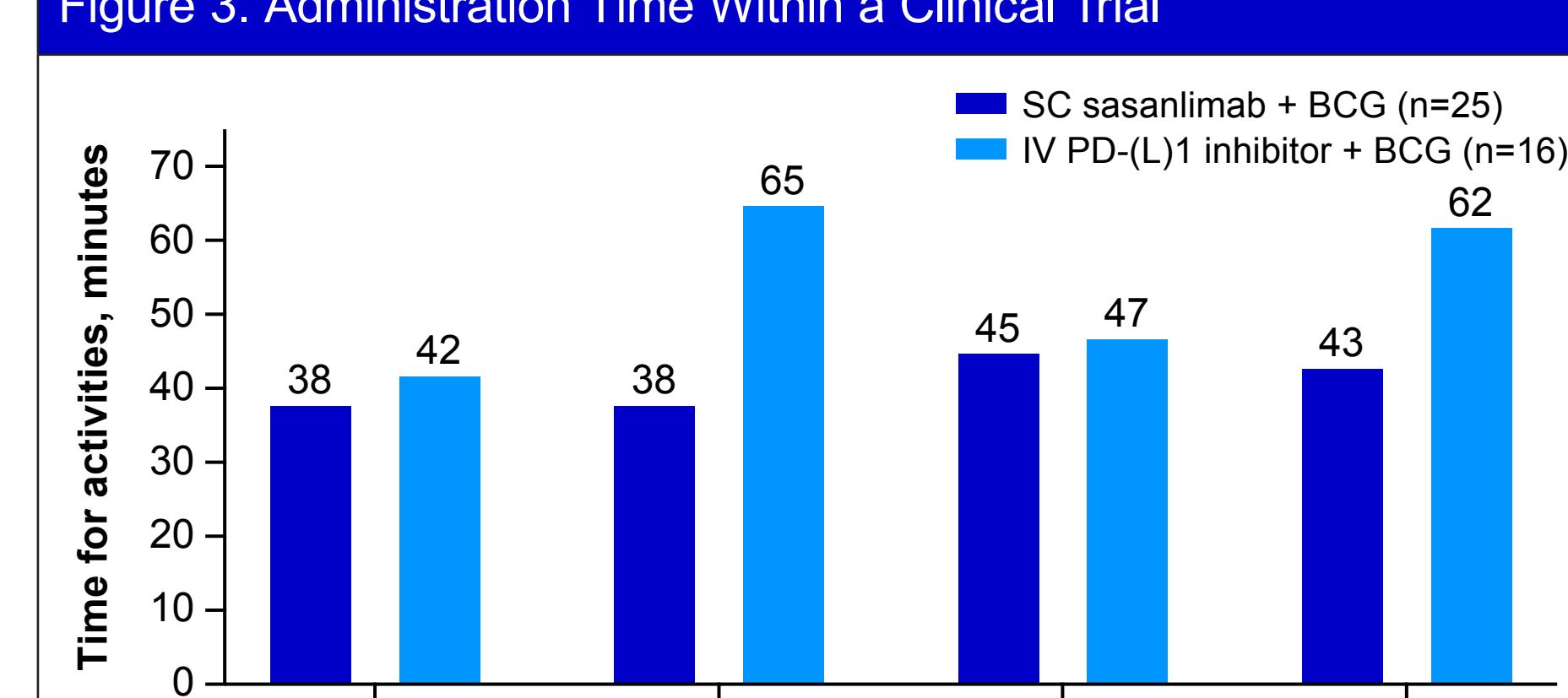

Figure 1. Ease of Experience by Specialty in Administering SC Sasanlimab Plus BCG and IV PD-(L1) Inhibitor Plus BCG in a Clinical Trial



BCG, intravesical Bacillus Calmette-Guerin; IV, intravenous; PD-(L1), programmed cell death-ligand 1; SC, subcutaneous.

\*1=extremely difficult and 7=extremely easy.

Figure 2. Ease of AE Management by Specialty for Sasanlimab Plus BCG or IV PD-(L1) Inhibitor Plus BCG in a Clinical Trial

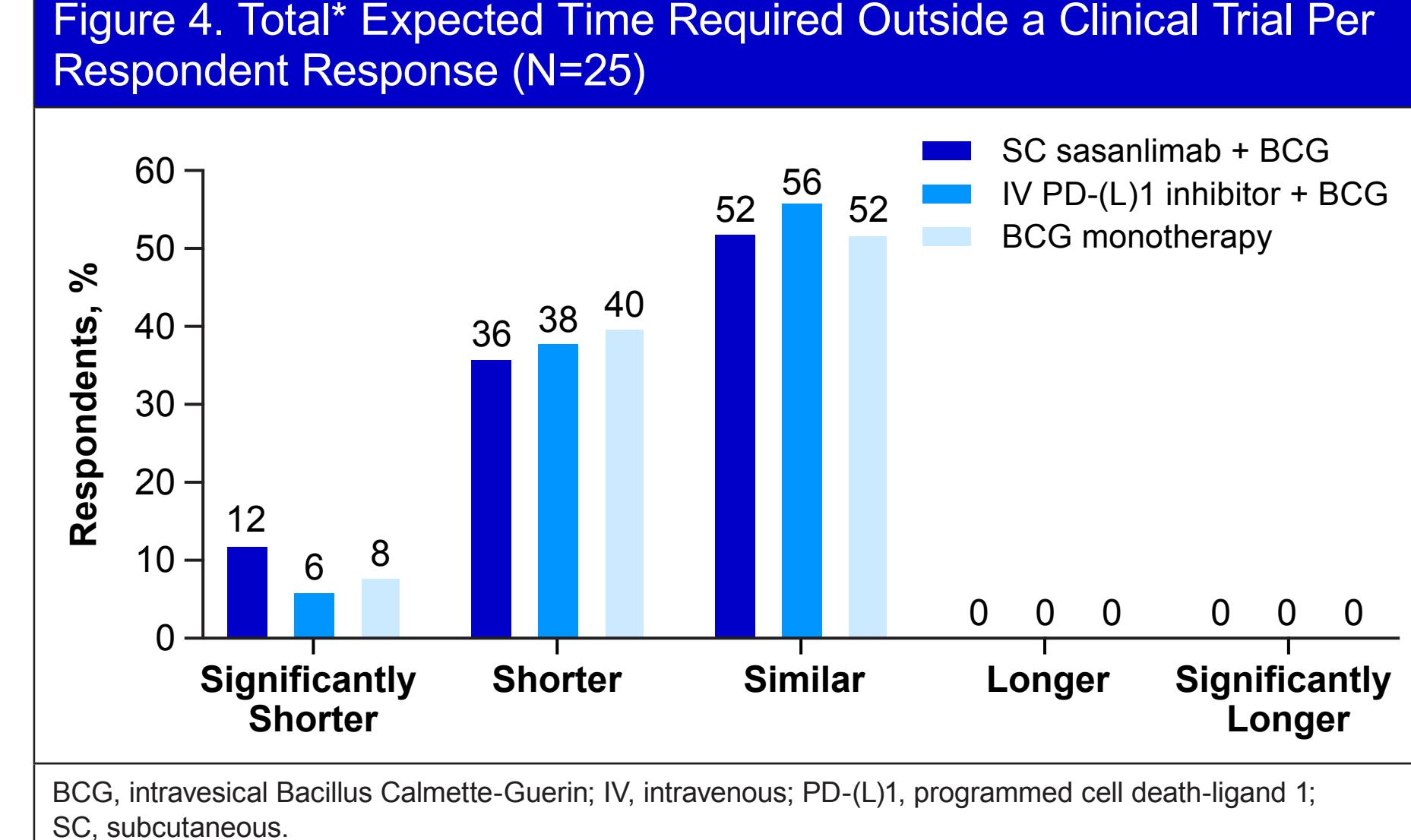



AE, adverse event; BCG, intravesical Bacillus Calmette-Guerin; IV, intravenous; PD-(L1), programmed cell death-ligand 1.

\*1=extremely difficult and 7=extremely easy.

In the clinical trial setting, total administration time with BCG, which included preparation, administration, post-treatment monitoring, and waiting times, was shorter with SC sasanlimab (mean, 164 minutes) than with IV PD-(L1) inhibitor (mean, 216 minutes; Figure 3).

Figure 3. Administration Time Within a Clinical Trial




BCG, intravesical Bacillus Calmette-Guerin; IV, intravenous; PD-(L1), programmed cell death-ligand 1; SC, subcutaneous.

\*Monitoring after treatment.

Estimated administration time in real-world settings is expected to be shorter than in a clinical trial, with a greater reduction for SC sasanlimab (48% of respondents) than with IV PD-(L1) inhibitor (44% of respondents; Figure 4).

Figure 4. Total\* Expected Time Required Outside a Clinical Trial Per Respondent Response (N=25)

