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 A surrogate endpoint (SE) is an intermediate outcome that is used as a direct 

substitute or predictor of a final “true” outcome of interest in clinical trials or real-world 

settings.1

 Surrogate endpoints are increasingly appealing in clinical research as they can be 

measured earlier or with fewer resources than the true endpoint. Their use can 

accelerate the evaluation of new therapies, particularly in oncological settings where 

lengthy follow-up is often needed to obtain statistically mature overall survival (OS) 

data due to recent improvements in standard of care.2

 Elston and Taylor proposed a three-level hierarchical framework for evaluating the 

validity of SEs as follows: 1) biological plausibility of a causal mechanism between the 

surrogate and true endpoints, 2) association between the surrogate and the true 

endpoints at the individual patient level, and 3) association between treatment effects 

on the surrogate and true endpoints across multiple clinical trials.1

 While the association between treatment effects can be assessed using published 

aggregate-level data, the individual level association requires individual patient data 

(IPD) from at least one clinical trial or real-world cohort. This requirement is frequently 

a barrier to the assessment of second criterion proposed by Elston and Taylor 

because procurement of IPD from external sources is often costly and difficult due to 

privacy concerns and regulatory barriers.

 Additionally, even when IPD are available, the standard Copula-based approach 

cannot estimate the Pearson’s correlation coefficient due to the censored nature of 

survival data.4 The standard Copula-based approach may also be prone to 

convergence and interpretation issues due to their sophisticated structural forms.

 Alternatively, pseudo IPD can be reconstructed from the published Kaplan-Meier (KM) 

curves.3 However, this procedure can only be used to reconstruct the survival data for 

the SE and true endpoint separately. To investigate the association between the SE 

and true endpoint using existing correlation measures, the reconstructed survival data 

for the surrogate and true endpoint need to be paired.5

 A potential solution to this problem is the application of a three-state illness-death 

model. This approach has been investigated previously in simulating paired survival 

data in metastatic gastric cancer6 and in metastatic melanoma.5
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Objective

 To devise a novel framework for indirectly estimating individual-level 

correlation using reconstructed survival data, with an application in 

metastatic hormone-sensitive prostate cancer (mHSPC).

 To investigate the robustness of the proposed indirect approach to the 

key parameters elicited from the aggregate level data.

 In the Phase III trials evaluating new therapies in mHSPC, it can take approximately a 

decade to achieve mature OS data. Therefore, Halabi et al. (2024) investigated both 

individual-level and trial-level association between radiographic progression-free 

survival (rPFS) and OS in mHSPC by pooling IPD from nine trials.

 To validate the predictive performance of a three-state illness-death model in 

assessing the individual-level surrogacy between rPFS and OS in the same patient 

population, we reconstructed pseudo IPD3 for both endpoints from the digitized KM 

curves published by Halabi et al. (2024).7 Reconstructed pseudo IPD were based on 

6,390 patients pooled across nine trials in the evidence base.

 Reconstructed, unpaired rPFS and OS data were used in a survival modeling 

framework to derive the parameters of a microsimulation which is used to generate 

uncensored and paired rPFS-OS outcomes for the study cohort.

 The backbone of the simulation was the elicitation of the pre-progression death (PPD) 

probability and post-progression survival (PPS) curve. The procedure to elicit these 

variables and the subsequent simulation process are summarized as below:

1. Standard parametric and spline-based models were fitted to both endpoints, and 

the best fitting model was selected independently for each endpoint based on 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

visual assessment of survival and hazard plots. A lifetime horizon of 360 months 

was chosen for long-term extrapolations and mean rPFS, PPS and OS 

calculations after model selection.

2. Per Figure 1, OS can be expressed as the sum of rPFS and PPS. Furthermore, 

an exponentially distributed PPS can be derived from mean rPFS, mean OS, 

and the pre-progression death (PPD) probability. Therefore, the most suitable 

PPS curve was elicited iteratively by evaluating the PPD probability (in 

increments of 0.01 from 0 to 1) under which the modeled OS obtained from the 

illness-death model, which is the convolution of the elicited PPS curve with the 

extrapolated rPFS curve, approximated the modeled OS curve from the reported 

data as closely as possible. The iterative procedure relied on a moment-

matching approach.

3. Paired rPFS-OS data were simulated for 6,390 patients [the sample size of 

patients across all trials in Halabi et al. (2024)] by (1) randomly determining 

whether each patient progressed or died before progression per the PPD 

probability, (2) sampling their rPFS and PPS durations from their respective 

curves (i.e., PPS = 0 if death occurred before progression), and (3) combining 

simulated rPFS and PPS to calculate OS.

4. Finally, the paired rPFS-OS data were used to calculate Kendall’s (𝜏), 
Spearman’s (ρ) and Pearson’s (r) correlation coefficients between the two 

endpoints.

 This process was repeated 100 times, then each correlation coefficient (𝜏, ρ and r) 

and its standard error were estimated by the sample mean and standard deviation 

across iterations on the Fisher-transform scale.

 Sensitivity analyses were conducted by varying the following three parameters 

around their base-case values or estimates: PPD probability by ±10%, hazard rate of 

PPS by ±10%, and time horizon by ±60 months.

Results

Conclusions

 This proposed approach can estimate both rank and product moment correlation coefficients without access to IPD and be generalized to other 

survival-based time-to-event SEs and cancer types. However, the approach is limited to predicting OS from endpoints such as PFS and 

recurrence-free or event-free survival, not other outcomes with binary nature (e.g., tumor response).

 Predictions from the proposed approach in this case study can be conservative due to independent sampling of rPFS and PPS in the simulation 

procedure. Despite the conservativeness of the results, sensitivity analyses highlighted the robustness of the simulation procedure to considerable 

variation in key parameters of the process.

References

1. Taylor RS and Elston J. NIHR Health Technology Assessment. 2009. 13(8):1–50.

2. Wheaton L and Bujkiewicz S. Int J Technol Assess Health Care. 2025. 41(1):e11.

3. Guyot et al. BMC Med Res Methodol. 2012. 12(1). 

4. Dimier et al. Pharm Stat. 2017; 16(5):322–333.

5. Kanters et al. Value in Health 2022, 25:12S

6. Alagoz et al. Annals of Oncology. 2022. 33, S267.

7. Halabi et al. J Clin Oncol. 2024. 42(9):1044–1054.

Acknowledgments

Authors report employment with Evidinno Outcomes Research Inc. (Vancouver, BC, Canada). This research was conducted during Murat Kurt’s employment

with Evidinno Outcomes Research Inc.

 The spline normal model was identified as the best fitting distribution for both rPFS and OS (one and two knots, respectively), and this was also confirmed visually 

(Figure 2). There was a slight overestimation in the tail of the reported OS curve with the selected fit, but otherwise the modelled curves and their corresponding 

hazards closely captured the trend in the observed KM curves and underlying smoothed hazard rates, respectively, throughout the follow-up for both endpoints.

 The PPD probability was estimated as 22%, which translated to a monthly PPS hazard rate of 0.042 under the exponential distribution assumption. For the estimated 

PPD probability and PPS hazard rate, the modeled OS from the three-state illness-death model matched the extrapolated OS from the observed data closely. The 

elicited PPS curve and the corresponding mean PPS are illustrated in Figure 3.

 Estimated rPFS, OS, and PPS curves from the first batch of the simulation process are compared to the corresponding extrapolated and elicited curves using reported 

data in Figure 4. The simulated curves closely matched the extrapolated curves for all three outcomes (i.e. rPFS, PPS and OS), indicating that the process of 

simulating correlated data did not impact the marginal distributions of any of the three outcomes. Estimates for Pearson’s r, Kendall's 𝜏, and Spearman's ρ are 

presented in Table 1.

 In the primary analysis, the simulation procedure estimated a Pearson's r of 0.965 (95% CI: 0.961, 0.968), a Kendall's 𝜏 of 0.707 (95% CI: 0.695, 0.719), and 

a Spearman's ρ of 0.857 (95% CI: 0.847, 0.867). 

 The estimated Kendall's 𝜏 was slightly conservative compared to the Kendall’s 𝜏 of 0.83 (95% CI: 0.82, 0.84) obtained from Copula-based methods using 

actual IPD pooled across trials in the original meta-analysis.4

 Sensitivity analysis results were consistent with the primary analysis, demonstrating insensitivity of the results to moderate variations in the estimates of the 

PPD probability and PPS hazard, as well as the choice of time horizon when estimating mean rPFS and mean OS.

Effective Use of Reconstructed Survival Data for Individual-Level 

Correlation Assessment in Oncology: A Case Study in Metastatic-

Hormone Sensitive Prostate Cancer (mHSPC)

Figure 1: Structure of three-state death-illness model used to estimate paired rPFS 

and OS data.

* – Not reported by the study.

Abbreviations: OS – Overall Survival, rPFS – Radiographic Progression-Free Survival, p – Pre-progression death 

probability, PPS – Post-Progression Survival, TTP – Time to Progression.

Figure 2: Comparison of reported and modeled curves for rPFS and OS.

Abbreviations: OS – Overall Survival, rPFS – Radiographic Progression-

Free Survival.

Figure 3: Estimated PPS and corresponding mean PPS from (A) time of 

randomization (B) estimated time of progression.

Note: Green shaded area represents mean PPS.

Abbreviations: OS – Overall Survival, PPS – Post-Progression Survival, rPFS – 

Radiographic Progression-Free Survival.

Figure 4: .Comparison of extrapolated and simulated curves for rPFS, OS 

and PPS.

Note: Simulated rPFS and PPS curves are derived by sampling from the extrapolated 

(rPFS) and elicited (for PPS) counterparts. Therefore, for these two outcomes, close 

approximations between the modeled curves from observed data and simulated curves 

are expected. However, the simulated OS curve is derived indirectly from the modeled 

rPFS and PPS curves, and estimated PPD probability. Therefore, a close approximation 

between the simulated and extrapolated OS curves is not guaranteed and close 

approximation between the two reflects the predictive ability of the procedure.

Abbreviations: OS – Overall Survival, PPS – Post-Progression Survival, rPFS – 

Radiographic Progression-Free Survival.

Analysis
Pearson's r

(95% CI)

Kendall’s 𝜏

(95% CI)

Spearman’s ρ

(95% CI)

Primary
0.965

 (0.961, 0.968)

0.707

 (0.695, 0.719)

0.857

 (0.847, 0.867)

p − 10%
0.966

 (0.963, 0.969)

0.709

 (0.700, 0.718)

0.859

 (0.851, 0.867)

p + 10%
0.963

 (0.959, 0.967)

0.706

 (0.692, 0.719)

0.854

 (0.843, 0.865)

h − 10%
0.958

 (0.954, 0.962)

0.701

 (0.686, 0.715)

0.846

 (0.834, 0.858)

h + 10%
0.969

 (0.967, 0.972)

0.715

 (0.707, 0.722)

0.866

 (0.859, 0.872)

Horizon − 60 months
0.958

 (0.954, 0.961)

0.706

 (0.694, 0.718)

0.857

 (0.847, 0.867)

Horizon + 60 months
0.970

 (0.966, 0.973)

0.709

 (0.697, 0.721)

0.858

 (0.848, 0.868)

Table 1: Individual-level correlation estimates for base-case setting and sensitivity 

analyses.

Note: Pearson’s correlation coefficient indicates stronger association between rPFS and OS as 

it’s based on nominal durations of these endpoints rather than their ordered ranks.

Abbreviations: CI – Confidence Interval, p – Pre-progression death probability, h – Hazard rate 

for post-progression survival, OS – Overall Survival, rPFS – Radiographic Progression-Free 

Survival.
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