

Negative symptoms in schizophrenia: An observational study of patient characteristics, cost and healthcare resource utilisation from a US healthcare database.

EPH169

J Zhao¹, L Zhang², WB DeHart³, C Hastedt¹

¹Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; ²Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States; ³Optum Life Sciences, HEOR, Eden Prairie, MN, United States.

Introduction

1 Context
Negative symptoms (NS) are common in patients living with schizophrenia (SCZ) and are characterised by reduced motivation, diminished emotional expression and social withdrawal. These symptoms significantly impair daily functioning and quality of life.^{1,2}

2 Unmet need
Current pharmacological options offer limited efficacy in addressing NS, and no treatments are specifically approved for their management. As a result, many patients with SCZ continue to experience persistent NS despite receiving antipsychotic treatment.^{1,2}

NS remains a major and under-addressed clinical challenge, contributing to long-term disability and a substantial burden on patients and the health care system. This includes increased healthcare resource utilisation (HCRU) and associated costs.³

Aim

To identify patients with SCZ treated with antipsychotics and who suffer from NS, using United States (U.S) electronic health records (EHRs) and claims data, and to describe their clinical and demographic characteristics, HCRU, and associated costs.

Methods

Study design

This was an observational, non-interventional study using de-identified EHR and administrative claims data from the Optum Market Clarity Integrated Clinical + Claims Database. Patients with and without NS were identified and compared.

- Study Period: July 2018 – September 2023.
- Index Date: Randomly selected medical claim with a SCZ diagnosis during the identification period (Jan 1, 2019 – Sep 30, 2022).
- Baseline: 6 months prior to index date.
- Follow-up: 12 months on and after index date.

Inclusion Criteria
Population: Adults with ≥ 1 SCZ diagnosis (ICD-10: F20.*)
Continuous claims-based enrollment during baseline and follow-up
EHR data of ≥ 2 records, ≥ 1 during baseline and ≥ 1 during follow-up period
 ≥ 90 days of antipsychotic supply during baseline and at index date

Outcomes

Patients with NS:

- Were identified within ± 6 months of the index period using natural language processing of EHR data (e.g., loss of interest in usual activities, flat affect, anhedonia) and diagnosis codes (e.g., indicating lack of energy, lethargy, flat affect or feeling lonely).

Overall mortality was analysed using a Cox proportional hazards model adjusting for multiple covariates including age, sex, substance abuse and comorbidity index score.

Treatment change was defined as the initiation of an antipsychotic or mood stabiliser not present at the index date during the follow-up period.

HCRU and standardised related costs: all cause (not limited to mental health), mental health-related and SCZ-related.

Abbreviations

CI, confidence interval; EHR, electronic health record; HCRU, healthcare resource utilisation; HR, hazard ratio; ICD, international classification of diseases; MDD, major depressive disorder; NS, negative symptoms; SCZ, schizophrenia; SD, standard deviation; U.S, United States.

References

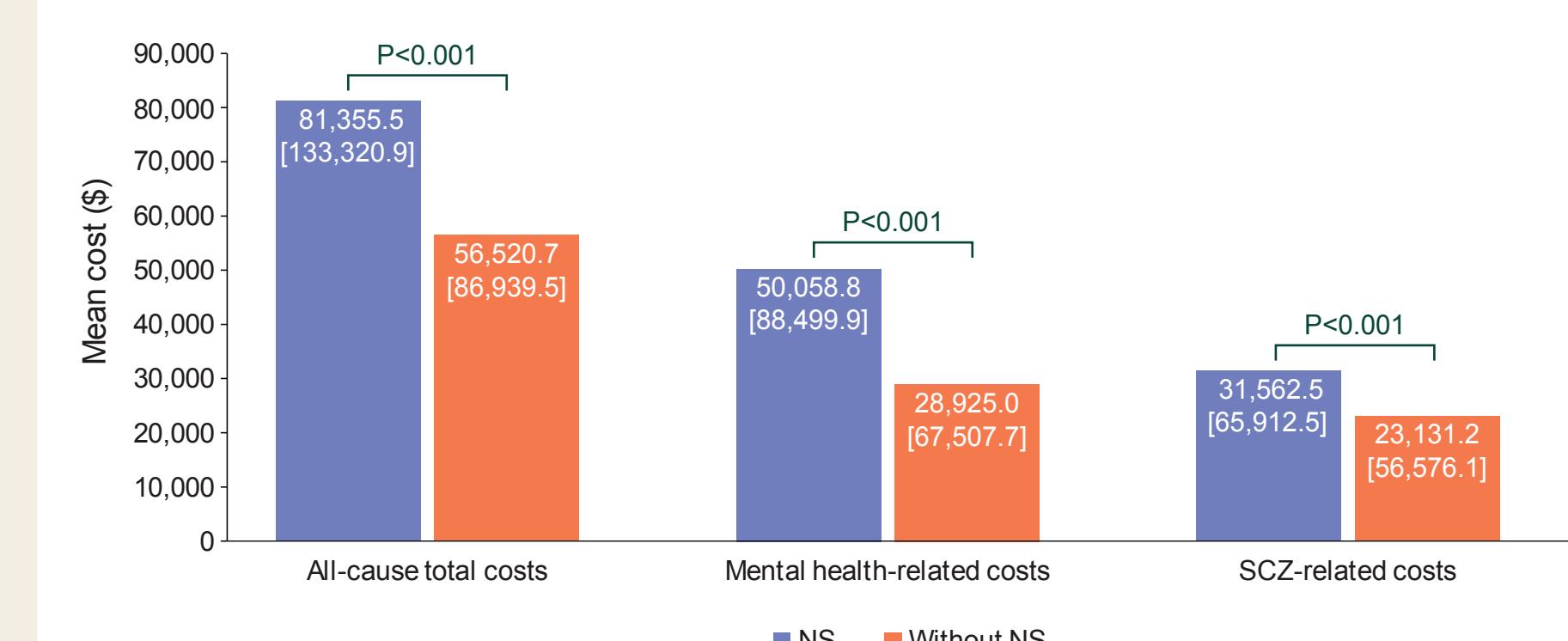
1. Galderisi S, Kaiser S, Bitter I, et al. EPA guidance on treatment of negative symptoms in schizophrenia. *Eur Psychiatry*. 2021;64:e21.
2. Sabé M. Combating negative symptoms in schizophrenia: Updated treatment approaches. *Psychiatric Times*. 2024;41(12):20-21.
3. Correll CU and Schooler NR. Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. *Neuropsychiatr Dis Treat*. 2020;16:519-534.
4. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis*. 1987;40:373-383.

Disclosures

JZ, LZ and CH are full-time employees of Boehringer Ingelheim. WBH is an employee of Optum Life Sciences.

Acknowledgments

The authors meet the criteria for authorship as recommended by the International Committee of Medical Journal Editors. This study was funded by Boehringer Ingelheim (2006 - 0006). Writing, editorial support, and formatting assistance were provided by Yashini Naidoo.


Presenting author contact information

Jing Zhao: jing_5.zhao@boehringer-ingelheim.com

Key Conclusions


- ✓ In this US-based observational study of 17,104 patients with SCZ, 43% exhibited NS, highlighting the substantial burden within this population.
- ✓ NS was associated with increased HCRU, particularly in emergency visits, inpatient stays, and mental health-related services, which translated into substantially higher standardised healthcare costs across all domains.
- ✓ Patients with NS incurred higher total cost of care, including higher total mental-health-related and SCZ-related cost of care (Figure 1), indicating a significant economic burden.
- ✓ To optimise outcomes for patients with SCZ, it is essential for the healthcare system to prioritise the recognition and diagnosing of NS and advance treatment approaches.

Figure 1. Total cost care (mean [SD]) per person per year, by cause, in US dollars in patients with SCZ, with and without NS

Results

Study population

Demographic characteristics were numerically similar between patients with and without NS. (Full patient demographics are shown in Table 1).

Table 1. Patient demographics in patients with SCZ with and without NS

Characteristic	SCZ with NS	SCZ without NS
Mean age, yrs (SD)	49 (15)	48 (15)
Sex		
Female	3,442 (47.1)	4,755 (48.5)
Male	3,858 (52.8)	5,049 (51.5)
Race		
Caucasian	4,434 (60.7)	5,695 (58.0)
Black	2,149 (29.4)	2,827 (28.8)
Asian	94 (1.2)	181 (1.8)
Insurance		
Commercial	2,797 (38.3)	3,363 (34.3)
Medicaid	2,357 (32.2)	2,921 (29.7)
Medicare	1,627 (22.2)	2,118 (21.6)
Medicare patients <65 years old	1,222 (75.1)	1,542 (72.8)
Missing	238 (3.2)	1,026 (10.4)
Other	171 (2.3)	223 (2.2)
Uninsured	110 (1.5)	153 (1.5)

Results are shown as n (%) unless otherwise stated

Study outcomes

The Charlson Comorbidity Index was analysed, and the most frequent mental health comorbidities are shown in Table 2.

Table 2. The five most common comorbidities at index date and during follow up in patients with SCZ, with and without NS

Baseline characteristic	NS (n=7,300)	Without NS (n=9,804)
Comorbidity, n (%)		
Alcohol or substance abuse*	3,185 (43.6%)	2,861 (29.1%)
Adjustment disorder*	2,084 (28.5%)	1,993 (20.3%)
Anxiety disorder*	4,230 (57.9%)	4,658 (47.5%)
Bipolar disorder*	3,474 (47.5%)	3,783 (38.5%)
MDD*	4,091 (56.0%)	4,358 (44.4%)
Charlson Comorbidity Index, mean (SD)*	1.52 (2.0)	1.33 (1.8)

*P<0.0001 for all variables tested

Mortality Risk Factor in SCZ

NS were associated with a 35% increased risk of death
HR = 1.35, 95% CI: 1.14–1.59; P<0.001; model adjusted for demographics, baseline comorbidities, medication usage

Table 3. Antipsychotic treatment patterns in patients with SCZ, with and without NS

SCZ treatment use at index date	With NS (%)	Without NS (%)
First generation antipsychotics	26.8	19.4
Second generation antipsychotics	72.8	80.0
Antipsychotic monotherapy	66.3	83.1
Dual combination antipsychotic therapy	30.1	15.8
Triple combination antipsychotic therapy	3.5	0.9
SCZ treatment use at follow-up		
Changed the SCZ treatment*	34.0	21.0
Discontinued antipsychotic medication*	27.6	23.8

NS, negative symptoms; SCZ, schizophrenia.

*P<0.0001; Treatment change was defined as the initiation of an antipsychotic or mood stabiliser not present at the index date during the follow-up period

Table 4. HCRU during 1-year-follow-up in patients with SCZ, with and without NS

	NS	Without NS	P-value
All-cause HCRU			
Number of visits, mean (SD)	8.5 (20.1)	7.6 (18.5)	0.002
Outpatient	3.1 (5.7)	1.8 (3.6)	<0.001
Emergency services	2.0 (3.7)	0.9 (2.3)	<0.001
Inpatient	7.8 (21.8)	7.6 (33.9)	0.760
Mental health-related HCRU			
Number of visits, mean (SD)	4.9 (16.6)	4.2 (15.6)	0.005
Outpatient	1.7 (3.8)	0.8 (2.2)	<0.001
Emergency services	1.6 (3.1)	0.7 (2.0)	<0.001
Inpatient	8.6 (23.8)	8.6 (35.9)	0.930
SCZ-related HCRU			
Number of visits, mean (SD)	1.9 (11.3)	2.1 (11.9)	0.285
Outpatient	0.6 (1.8)	0.3 (1.0)	<0.001
Emergency services	0.7 (1.9)	0.3 (1.3)	<0.001
Inpatient	9.3 (27.8)	9.7 (42.7)	0.691

Patients with NS incurred substantially higher healthcare costs across several categories. Differences between patients with NS and those with no NS were driven by medical cost. Pharmacy cost did not differ significantly (Table 5).

Table 5. Standardised healthcare costs during 1-year-follow-up in patients with SCZ with and without NS

	NS	Without NS	P-value
All-cause costs			
Outpatient	7,501.6 (26,773.3)	6,151.2 (20,660.2)	<0.001
Emergency services	10,692.0 (24,652.6)	5,324.5 (14,083.1)	<0.001
Inpatient	29,973.8 (69,131.4)	14,314.2 (49,447.7)	<0.001
Medical	64,828.4 (99,740.7)	40,149.7 (75,562.7)	<0.001
Pharmacy	16,527.1 (86,616.4)	16,371.0 (38,459.5)	0.874
Mental health related costs			
Outpatient	4,152.1 (20,730.5)	3,276.6 (16,993.3)	0.002
Emergency services	6,891.7 (19,926.9)	2,912.2 (10,588.5)	<0.001
Inpatient	27,828.9 (6		