

Evaluation and Validation of the Hypoparathyroidism Daily Diary of Symptom Experience (HPT-DD-SE) and the Hypoparathyroidism Life Impact Questionnaire (HPT-LIQ)

Diane Whalley¹; Rebecca Crawford¹; Nadège Tremel²; Blandine Weiss²; Caroline Robo²; Gaëlle Charier²; Deborah Murphy³; Lynda Doward¹; Soraya Allas²

¹RTI Health Solutions, Manchester, United Kingdom; ²Alexion Pharma France, Écully, France; ³HypoPARAthyroidism Association, Inc., Lemoore, CA, United States

INTRODUCTION

- Hypoparathyroidism (HypoPT) is a rare disease of parathyroid hormone (PTH) deficiency that leads to broad functional consequences with a heavy symptom burden and impaired quality of life^{1,2}
- The Hypoparathyroidism Daily Diary of Symptom Experience (HPT-DD-SE) and Hypoparathyroidism Life Impact Questionnaire (HPT-LIQ) are novel patient-reported outcome (PRO) measures assessing symptoms and health-related quality of life (HRQoL) in chronic HypoPT³
- The HPT-DD-SE and HPT-LIQ were developed in United States (US) English based on qualitative work conducted with patients with chronic HypoPT in the US and adapted into 18 new languages (16 countries)^{3,4}

OBJECTIVES

- This study evaluated the psychometric properties and meaningful change thresholds for domains of the HPT-DD-SE and HPT-LIQ, which are novel PRO measures assessing symptoms and HRQoL in chronic HypoPT

CONCLUSIONS

- HPT-DD-SE and HPT-LIQ scale scores demonstrate strong reliability, construct validity, and responsiveness to assess chronic HypoPT symptoms and impacts in clinical trials
- These data reflect improvements in physical symptoms, cognitive symptoms, and physical functioning that would be meaningful for patients affected by chronic HypoPT

METHODS

Analysis sample

- Psychometric analyses were conducted in 2 stages using data collected in the randomized, placebo-controlled, phase 3 CALYPSO trial of eneboparatide in adults with chronic HypoPT (NCT05778071)⁵
- The stage 1 analysis sample included all randomized patients who had evaluable HPT-DD-SE or HPT-LIQ data at baseline and week 12
- The stage 2 analysis sample included randomized patients who had evaluable HPT-DD-SE or HPT-LIQ data at baseline and week 24

Psychometric evaluation

- HPT-DD-SE scale scores were computed as the weekly average of daily scores, with daily scores computed as the average of item scores; HPT-LIQ scale scores were computed as the average of item scores
- Evaluations included: test-retest reliability intraclass correlation coefficients (ICCs); Cronbach's alpha and McDonald's omega coefficients for internal consistency; construct validity and responsiveness correlations with the Patient Global Impression of Severity (PGIS), Patient Global Impression of Change (PGIC), Clinical Global Impression of Severity (CGIS), and Short Form Health Survey-36 version 2 (SF-36v2) scores, as well as with serum calcium (sCa) and urinary calcium (uCa) levels; convergent/divergent validity correlations; known-groups analysis; responsiveness correlations; change-groups analysis; and descriptive statistics
- Meaningful within-patient change (MWPC) and minimal important difference (MID) thresholds were estimated using descriptive statistics for change in HPT-DD-SE/HPT-LIQ scale scores at defined PGIS anchor levels

RESULTS

- The stage 1 and stage 2 analysis samples included 189 patients and 151 patients, respectively (Table 1)
- There were no problematic floor or ceiling effects in any of the HPT-DD-SE scale scores at baseline; specifically, fewer than 15% of participants obtained either the worst or best score at baseline
- For the HPT-LIQ Physical Functioning scale score, there was no floor effect, but there was a minor ceiling effect at baseline, with 19.8% of participants obtaining the best score of 0
- Scale scores demonstrated good test-retest reliability (ICCs > 0.7) and strong internal consistency (Cronbach's alpha and McDonald's omega > 0.9) (Tables 2 and 3)
- Most correlations with external measures were as hypothesized (Table 4)

Table 1. Sample characteristics

	Stage 1 (N = 189)	Stage 2 (N = 151)
Age, mean (SD)	51.3 (12.38)	51.5 (12.05)
Sex, n (%)		
Female	145 (76.7)	120 (79.5)
Male	44 (23.3)	31 (20.5)
Race, n (%)		
Asian	2 (2.4)	1 (1.4)
Black or African American	1 (1.2)	1 (1.4)
White	81 (95.3)	70 (95.9)
Unknown	1 (1.2)	1 (1.4)
Missing	104 (55)	78 (51.7)
Ethnicity, n (%)		
Hispanic or Latino	8 (9.4)	6 (8.2)
Not Hispanic or Latino	74 (87.1)	64 (87.7)
Not reported	2 (2.4)	2 (2.7)
Unknown	1 (1.2)	1 (1.4)
Missing	104 (55.0)	78 (51.7)

SD, standard deviation.

- In the HPT-DD-SE known-groups analysis, higher mean scores were observed for subgroups of participants with severe symptoms based on the corresponding PGIS and CGIS items (all analysis of variance [ANOVA] P's < 0.0001)
- In the HPT-DD-SE change-groups analysis, participants with the greatest improvements based on the PGIS, PGIC, and CGIS items showed the greatest improvement in scale scores (all ANOVA P's < 0.01)
- In the HPT-LIQ known-groups analysis, higher mean scores were observed for subgroups of participants with greater impact or more severe symptoms on the corresponding PGIS and CGIS items for HPT-LIQ Physical Functioning (all ANOVA P's < 0.0001)
- In the HPT-LIQ change-groups analysis, participants who had the greatest improvements based on the PGIS and PGIC items showed the greatest improvements in HPT-LIQ Physical Functioning (all ANOVA P's < 0.01)
- The predefined primary PGIS 1-category improvement anchor was used to estimate MWPC thresholds, with the PGIS 1-category and 2-category improvement anchors used to derive an additional MWPC threshold estimate (Table 5)

Table 2. Test-retest reliability

	ICC (95% CI), n (participants with no change in PGIS*)		
	Screening to BL†	W8 to W12‡	W20 to W24‡
HPT-DD-SE Core Physical Symptoms	0.84 (0.78, 0.89), 104	0.94 (0.92, 0.96), 102	0.95 (0.92, 0.97), 83
HPT-DD-SE Overall Physical Symptoms	0.86 (0.80, 0.90), 104	0.96 (0.94, 0.97), 102	0.96 (0.94, 0.97), 83
HPT-DD-SE Cognitive Symptoms	0.79 (0.67, 0.87), 96	0.96 (0.94, 0.97), 101	0.96 (0.94, 0.98), 87
HPT-LIQ Physical Functioning	0.89 (0.84, 0.92), 104	0.91 (0.87, 0.94), 107	0.82 (0.74, 0.88), 96

*PGIS Physical Symptoms for HPT-DD-SE Core Physical Symptoms and HPT-DD-SE Overall Physical Symptoms; PGIS Cognitive Symptoms for HPT-DD-SE Cognitive Symptoms; PGIS Physical Functioning for HPT-LIQ Physical Functioning. †For HPT-DD-SE, the analysis was based on the single assessment day at screening and a single day (day 1) at BL. ‡For HPT-DD-SE, the analysis was based on a randomly selected day from the 7 days at each time point. BL, baseline; CI, confidence interval; W8, week 8; W12, week 12; W20, week 20; W24, week 24.

Table 3. Cronbach's alpha and McDonald's omega coefficients

	Cronbach's alpha, n			McDonald's omega, n		
	BL	W12	W24	BL	W12	W24
HPT-DD-SE Core Physical Symptoms	0.91, 189	0.90, 189	0.92, 150	0.92, 189	0.90, 189	0.92, 150
HPT-DD-SE Overall Physical Symptoms	0.95, 189	0.95, 189	0.95, 150	0.95, 189	0.95, 189	0.95, 150
HPT-DD-SE Cognitive Symptoms	0.97, 189	0.96, 189	0.98, 150	0.97, 189	0.96, 189	0.98, 150
HPT-LIQ Physical Functioning	0.89, 187	0.91, 187	0.92, 144	0.90, 187	0.92, 187	0.92, 144

BL, baseline; n, number of participants; W12, week 12; W24, week 24.

Table 4. Correlations with external supporting measures

	Correlation coefficient											
	HPT-DD-SE Core Physical Symptoms			HPT-DD-SE Overall Physical Symptoms			HPT-DD-SE Cognitive Symptoms			HPT-LIQ Physical Functioning		
	BL	W12	W24	BL	W12	W24	BL	W12	W24	BL	W12	W24
PGIS*	0.70	0.77	0.69	0.70	0.77	0.70	0.80	0.85	0.88	0.79	0.78	0.75
PGIS change*	-	0.45	0.51	-	0.49	0.52	-	0.51	0.67	-	0.49	0.46
PGIC†	-	0.59	0.53	-	0.62	0.58	-	0.43	0.52	-	0.35	0.31
CGIS‡	0.48	0.54	0.58	0.47	0.52	0.56	0.50	0.62	0.65	0.34	0.35	0.45
CGIS change‡	-	0.32	0.34	-	0.33	0.36	-	0.34	0.32	-	0.20	0.20
SF-36v2 PCS	-0.71	-0.65	-0.66	-0.71	-0.68	-0.67	-0.59	-0.49	-0.41	-0.78	-0.73	-0.71
SF-36v2 PCS change	-	-0.48	-0.61	-	-0.52	-0.60	-	-0.41	-0.42	-	-0.58	-0.53
SF-36v2 MCS	-0.44	-0.51	-0.32	-0.49	-0.51	-0.36	-0.51	-0.58	-0.55	-0.41	-0.40	-0.31
SF-36v2 MCS change	-	-0.29	-0.43	-	-0.33	-0.49	-	-0.38	-0.45	-	-0.28	-0.21
Albumin-adjusted sCa	0.26	0.09	-0.02	0.24	0.08	-0.01	0.22	0.07	0.04	0.19	0.05	-0.01
uCa	-0.02	0.04	0.01	-0.01	0.05	0.04	-0.05	0.03	0.17	-0.01	0.02	-0.04

*Correlations are PGIS Physical Symptoms with both HPT-DD-SE Core Physical Symptoms and HPT-DD-SE Overall Physical Symptoms, PGIS Cognitive Symptoms with both HPT-DD-SE Cognitive Symptoms, and PGIS Physical Functioning with HPT-LIQ Physical Functioning. †Correlations are PGIC Physical Symptoms with both HPT-DD-SE Core Physical Symptoms and HPT-DD-SE Overall Physical Symptoms, PGIC Cognitive Symptoms with both HPT-DD-SE Cognitive Symptoms and HPT-DD-SE Overall Physical Symptoms, CGIS Cognitive Symptoms with HPT-DD-SE Cognitive Symptoms, and CGIS Overall Symptoms with HPT-LIQ Physical Functioning. BL, baseline; MCS, Mental Component Summary; PCS, Physical Component Summary; W12, week 12; W24, week 24.

Table 5. Meaningful change threshold estimates

	MWPC (primary)	MWPC (supportive)	MID
HPT-DD-SE Core Physical Symptoms	-1.2	-1.9	0.8
HPT-DD-SE Overall Physical Symptoms	-1.1	-1.8	0.8
HPT-DD-SE Cognitive Symptoms	-1.4	-2.9	0.7
HPT-LIQ Physical Functioning	-2.1	-3.4	2.0

For each scale, MWPC was estimated from the mean change score from baseline to week 24 for participants with a PGIS