

Real-World Treatment Patterns Among Patients With Relapsed or Refractory (R/R) NPM1-Mutated (NPM1m) Acute Myeloid Leukemia (AML) in the United States

Grace Gahlon,¹ Shailja Vaghela,² Lorena Lopez-Gonzalez,³ Craig W. Freyer,³ Shelby Corman,¹ Huan Huang³

¹Precision AQ, Bethesda, MD, USA; ²HealthEcon Consulting Inc., Ancaster, ON, Canada; ³Syndax Pharmaceuticals, Inc., New York, NY, USA.

INTRODUCTION

- Nucleophosmin 1 mutations (NPM1m) occur in ~30% of adult acute myeloid leukemia (AML) cases¹
- Approximately 50% of patients with NPM1m AML relapse or are refractory (R/R) following initial therapy^{2,3}
- There is limited literature on treatment patterns in R/R NPM1m AML

OBJECTIVE

- To describe real-world treatment patterns among patients with R/R NPM1m AML in the United States

METHODS

Study design and data source

- A retrospective study was conducted using real-world data from COTA Healthcare (COTA)
- COTA collects electronic health record (EHR) data from ~200 partnered academic and community health care provider sites in the United States
- The dataset includes patients ≥18 years of age at diagnosis who had a recorded date of diagnosis and clinician notes available in the EHR

Study population

- Adults with an initial AML diagnosis between January 2009 and June 2024 and documented R/R and NPM1m status were considered for inclusion (Figure 1)
- Patients with R/R NPM1m AML, defined as inadequate response, persistent disease/no response, or progression/relapse at any time after initial AML diagnosis as reported in the COTA database, were followed from the date of R/R until death, loss to follow-up, or end of the study period, whichever came first

Outcomes and analyses

- Descriptive analyses were performed for the overall cohort and 2 non-mutually exclusive subcohorts to examine treatment patterns after the US Food and Drug Administration (FDA) approval of venetoclax and midostaurin for AML
 - Overall cohort: all patients with R/R NPM1m AML
 - Recent subcohort: patients diagnosed between January 2019 and June 2024 (period following FDA approval of venetoclax in combination with hypomethylating agents for newly diagnosed AML)
 - FLT3-comutated subcohort: patients diagnosed between January 2017 and June 2024 (includes months immediately before and years following FDA approval of first FLT3 inhibitor [FLT3i], midostaurin, in combination with intensive chemotherapy [IC] for newly diagnosed AML on April 28, 2017) with NPM1m AML and an FLT3 internal tandem duplication (ITD) or FLT3 tyrosine kinase domain comutation
- In the R/R setting, all treatments, including hematopoietic stem cell transplant (HSCT), administered after first R/R and between subsequent relapse events were grouped into salvage lines
- Salvage regimens were classified into the following hierarchical categories:
 - IC, as defined in 2024 National Comprehensive Cancer Network (NCCN) guidelines⁴ (eg, high-dose cytarabine [HiDAC], fludarabine + cytarabine + granulocyte colony-stimulating factor ± idarubicin [FLAG±IDA], mitoxantrone + etoposide + cytarabine [MEC])
 - Low-intensity therapy (LIT), as defined in NCCN guidelines⁴ (eg, containing hypomethylating agents, low-dose cytarabine, venetoclax, other targeted therapies)
 - Unknown-intensity therapy, including regimens containing cytarabine with unknown doses and no other therapy categorized as LIT above
 - Investigational agents only

RESULTS

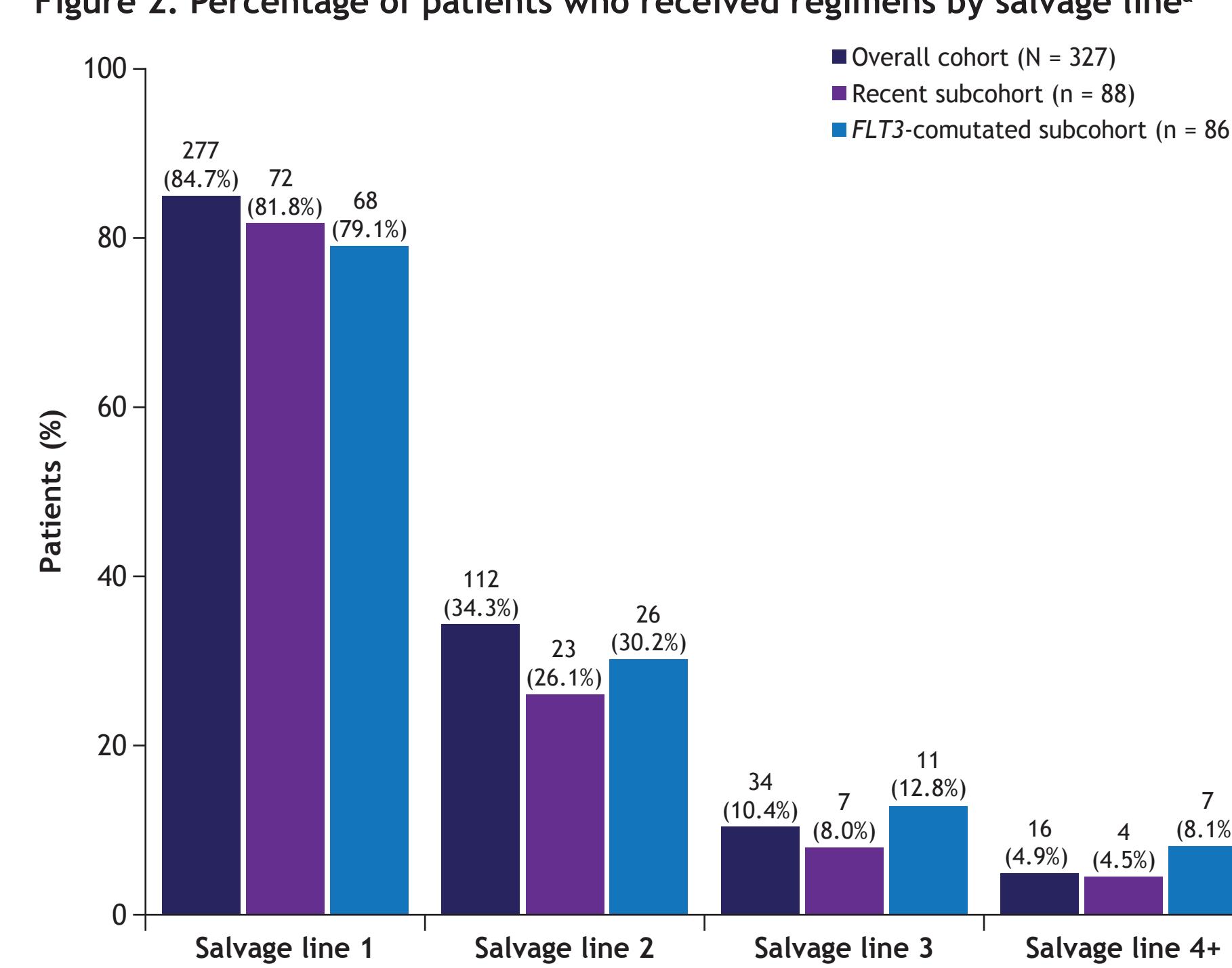
- A total of 327 patients with R/R NPM1m AML were included in the overall cohort (Figure 1, Table 1), and ~26% represent the recent and FLT3-comutated subcohorts, respectively

Figure 1. Patient selection from COTA Healthcare database



Table 1. Demographic and baseline characteristics^a

	Overall cohort (initial AML diagnosis: 2009–2024) N = 327	Recent subcohort (initial AML diagnosis: 2019–2024) n = 88	FLT3-comutated subcohort (initial AML diagnosis: 2017–2024) n = 86
Age at initial AML diagnosis (y), median (IQR)	62.0 (51.0–70.0)	64.5 (53.8–70.0)	64.0 (52.8–69.0)
19–59, n (%)	141 (43.1)	32 (36.4)	31 (36.0)
≥60, n (%)	186 (56.9)	56 (63.6)	55 (64.0)
Female, n (%)	184 (56.3)	54 (61.4)	47 (54.7)
Race, n (%)	White 258 (78.9) Black or African American 21 (6.4) Asian 12 (3.7) Other/multiple/missing 36 (11.0)	64 (72.7) 5 (5.7) 5 (5.8) 14 (15.9)	70 (81.4) 6 (7.0) 5 (5.8) 5 (5.8)
Ethnicity, n (%)	Non-Hispanic 256 (78.3) Hispanic, Latino, or Spanish origin 55 (16.8) Missing 16 (4.9)	69 (78.4) 17 (19.3) 2 (2.3)	68 (79.1) 17 (19.8) 1 (1.2)
Clinical practice setting, n (%)	Academic 192 (58.7) Community 135 (41.3)	57 (64.8) 31 (35.2)	56 (65.1) 30 (34.9)
Presence of comutations, n (%)	FLT3-ITD 156 (47.7) DNMT3A 107 (32.7) IDH2 59 (18.0) IDH1 56 (17.1) FLT3-TKD 55 (16.8) NRAS 38 (11.6)	45 (51.1) 37 (42.0) 20 (22.7) 15 (17.0) 13 (14.8) 14 (15.9)	79 (91.9) 40 (46.5) 16 (18.6) 14 (16.3) 21 (24.4) 10 (11.6)
Duration of first response, n (%) ^b	≤6 mo 63 (28.8) 6–12 mo 68 (31.1) ≥12 mo 88 (40.2)	20 (31.3) 26 (40.6) 18 (28.1)	21 (39.6) 19 (35.8) 13 (24.5)
Received HSCT prior to R/R, n (%)	33 (10.1)	11 (12.5)	15 (17.4)
Time from initial AML diagnosis to first R/R (mo), median (IQR)	9.0 (2.7–15.5)	7.1 (2.4–12.8)	5.0 (1.4–10.5)
Duration of follow-up after first R/R (mo), median (IQR)	10.8 (4.0–31.5)	7.8 (3.7–19.6)	7.9 (3.5–19.5)

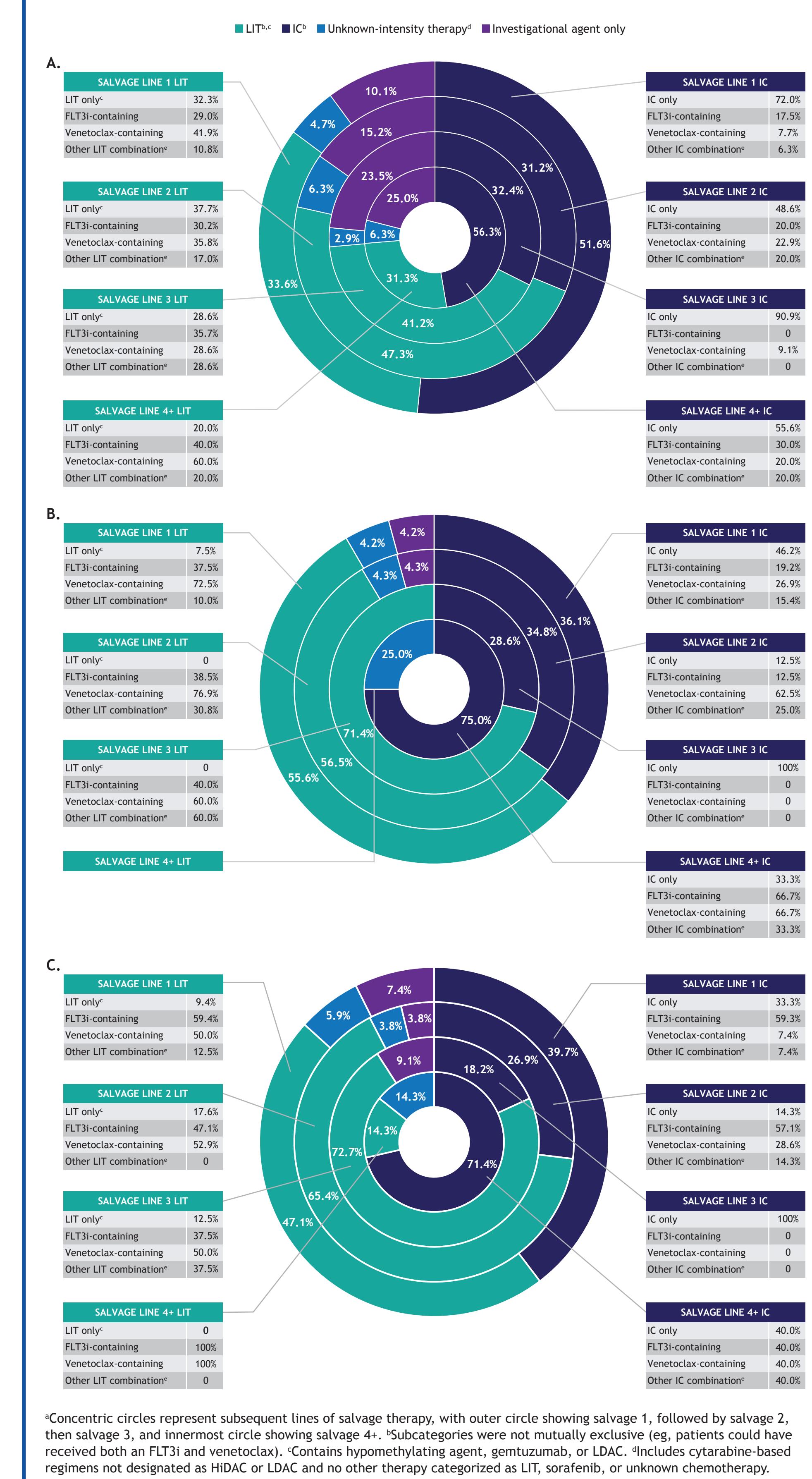

^aDemographic and baseline characteristics were described at initial AML diagnosis. ^bAmong those with composite complete response in frontline (overall cohort, n = 219; recent subcohort, n = 64; FLT3-comutated subcohort, n = 53). AML, acute myeloid leukemia; HSCT, hematopoietic stem cell transplant; IQR, interquartile range; ITD, internal tandem duplication; R/R, relapsed/refractory; TKD, tyrosine kinase domain.

Treatment patterns

Overall cohort

- Forty-nine (15.0%) patients did not receive salvage treatment during follow-up, of whom 39 (79.6%) died prior to end of follow-up, with median time to death of 21 days (Figure 2)
- Following the first R/R, 50.8%, 23.9%, 5.5%, and 4.9% of patients received 1, 2, 3, and 4+ salvage lines, respectively (data not shown)
- IC use was highest in salvage lines 1 (51.6%) and 4+ (56.3%; Figure 3A, starburst chart)
 - Among IC recipients (all salvage lines), IC only (48.6%–90.9%) was the most common regimen (Figure 3A, right table)
 - Among those who received IC (all salvage lines, n = 160), the most frequently used regimens were FLAG (12.9%), HiDAC (10.0%), and MEC (6.9%; data not shown)
- LIT use was highest in salvage line 2 (47.3%) and lowest in salvage 3 (41.2%; Figure 3A, starburst chart)
 - No clear utilization trend by salvage line was observed among LIT recipients (Figure 3A, left table)
 - Among those who received LIT (all salvage lines, n = 135), the most frequently used regimens were decitabine monotherapy (19.3%), azacitidine monotherapy (12.6%), and decitabine + venetoclax (10.4%; data not shown)
- Use of investigational agent-only regimens was highest in salvage line 4+ (25.0%) and lowest in salvage line 1 (10.1%; Figure 3A, starburst chart)
- 37.3% of patients received ≥1 HSCT in the R/R setting, of which 82.0% were transplanted in salvage line 1 and 13.9% in salvage line 2 (data not shown)

Figure 2. Percentage of patients who received regimens by salvage line^a


Recent subcohort (diagnosed between January 2019 and June 2024)

- 81.8% of patients received ≥1 salvage therapy (Figure 2), and 18.2% did not receive salvage treatment during follow-up (data not shown)
- Use of LIT was higher (55.6%–71.4%) compared with the overall cohort (Figure 3B, starburst chart)
 - Venetoclax-containing regimens were most common in salvage lines 1 to 3, followed by FLT3i-containing regimens (Figure 3B, left table)
 - Among those who received LIT (n = 49), the most frequently used regimens across all salvage lines were decitabine + venetoclax (14.3%), gilteritinib (14.3%), and azacitidine + venetoclax (12.2%; data not shown)
- Use of IC (n = 32) was lower (28.6%–75.0%) when compared with the overall cohort for salvage lines 1 to 3 (Figure 3B, starburst chart and right table)
 - The most frequently used regimens were FLAG (9.4%), CPX-351 (6.3%), and cytarabine + daunorubicin (6.3%; data not shown)
- Rates of HSCT were similar to the overall cohort; 38.9% of patients received ≥1 HSCT in the R/R setting, typically in salvage line 1 (33.3%; data not shown)

FLT3-comutated subcohort (diagnosed between January 2017 and June 2024)

- 79.1% of patients received ≥1 salvage therapy (Figure 2), and 20.9% did not receive salvage treatment during follow-up (data not shown)
- 61.8% of patients received FLT3i during any salvage line, of whom 29 (65.9%) received FLT3i with LIT and 19 (63.3%) received FLT3i with IC (data not shown)
- Rates of HSCT were lower compared with the overall cohort and recent subcohort; 27.9% of patients received ≥1 HSCT in the R/R setting, typically in salvage line 1 (26.5%; data not shown)

Figure 3. Medication regimens by salvage line^a in the (A) overall cohort (N = 327), (B) recent subcohort (n = 88), and (C) FLT3-comutated subcohort (n = 86)

^aConcentric circles represent subsequent lines of salvage therapy, with outer circle showing salvage 1, followed by salvage 2, then salvage 3, and innermost circle showing salvage 4+. Subcategories were not mutually exclusive (eg, patients could have received both an FLT3i and venetoclax). *Contains hypomethylating agent, gilteritinib, or LDAC. ^bIncludes cytarabine-based regimens not designated as HiDAC or LDAC and no other therapy categorized as LIT, sorafenib, or unknown chemotherapy.

^cIncludes regimens containing IDH1 and IDH2 inhibitors and investigational drugs.

FLT3i, FLT3 inhibitor; HiDAC, high-dose cytarabine; IC, intensive chemotherapy; LDAC, low-dose cytarabine; LIT, low-intensity therapy.

Limitations

- EHR data may be incomplete or inaccurate due to missing fields, inconsistent documentation, and variation in coding and recording practices across providers</