

Qualitative evaluation of an AI tool for opportunistic detection of vertebral fractures

Minjie Gao^{1*}, Catriona Inverarity^{2*}, Jiyoun Chang³, Manjot Brar⁴, Ruphinder Kaur⁵, Lauren Gatting², Juan I Baeza¹, Anna Barnes^{2,5}.

1. Department of Public Services Management & Organisation, King's Business School, King's College London. 2. King's Technology Evaluation Centre (KITEC), London Institute for Healthcare Engineering, King's College London. 3. School of Management, Faculty of Humanities and Social Sciences, University of Liverpool. 4. School of Mental Health & Physiological Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London. 5. Medical Physics & Clinical Engineering, Guy's and St Thomas's NHS Foundation Trust, London.

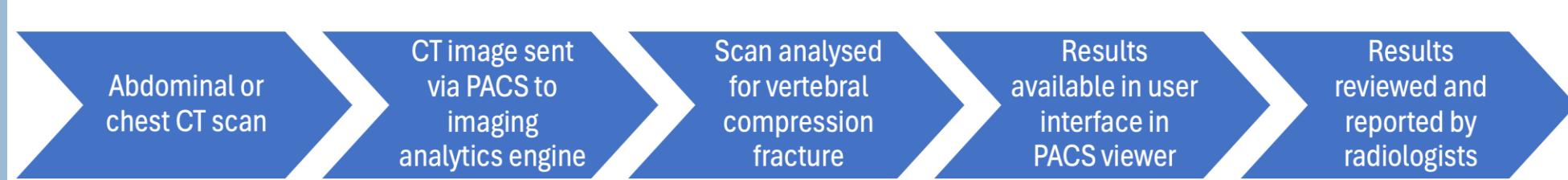
Introduction

Clinical context:

osteoporosis affects >3m people in the UK^{1,2}. Unmanaged cases can result in painful fractures which are expensive to treat and affect quality of life.

Unmet need:

early intervention and access to treatment can reduce or prevent future fractures. Vertebral fragility fractures are critical indicators of osteoporosis, and strong predictors of future fracture risk, but may be easy to miss or misdiagnose


99,220 patients estimated to have unidentified fragility fractures (2022)	~£4.4bn Estimated annual cost of fragility fractures to the NHS and social care ^{4,5}	579,722 DALYs lost in the UK due to fragility fractures ⁶
leading to 2,100 available fractures over the next 2 yrs ¹		

Proposed intervention:

Vertebral fragility fractures may be visible on CT scans which include the spine – but may not be detected or reported if this is not the primary indication for the scan. Using AI to review these scans for opportunistic detection could improve early diagnosis and prevent future fractures through timely intervention.

The technology

- Image processing software that uses AI for opportunistic detection of moderate-to-severe vertebral fractures
- Addition to standard care (additional staff time is required to review and report findings)
- Software price varies by number of scans analysed (range from £38,000 to £90,000 per year⁷).

Two deployment modes available:

- Direct to radiologist – AI-flagged cases reviewed and reported case-by-case by radiologists
- Direct to FLS – a list of AI-flagged cases sent directly to FLS team for review

and different sensitivity/specificity settings:

Setting	Description
Balanced	Intended to detect as many VCFs as possible Increased risk of false positive results. All AI-identified fractures manually verified; resource-intensive.
High	Described in other studies
Highest	Intended to reduce false positive rate / staff review time Risks missing some vertebral fractures.

Study background

This study (IRAS 317101) used a qualitative approach to investigate how a commercial AI fracture detection tool influences workflow, clinical decision making and staff and patient experiences.

Aim:

Investigate the implementation, adoption and impact of the AI fracture detection tool on staff, services and patients.

Objectives:

- Assess the impact of the AI tool on staff, clinical workflows and patient experience
- Identify challenges and limitations in adoption of the AI tool, including workforce adaptation.

Methods

- Qualitative design to investigate the implementation, adoption and impact of the AI tool on staff, services and patients.
- Semi-structured interviews with purposive sample of healthcare professionals (n=13) and patients (n=5) via MS Teams
- Thematic analysis of transcribed, coded data (per Braun and Clarke) to identify key themes in AI adoption

5 key themes identified:

• Workforce and workflow impact	(263 references)
• Practical implications of adopting AI	(143 references)
• Perceived impact on patient care	(162 references)
• AI adoption and integration	(148 references)
• Future potential of AI	(100 references)

Findings

IMPACT ON WORKFORCE & WORKFLOW

How introduction of AI impacted workforce roles and clinical workflows, creating both efficiencies and additional burdens.

- AI increased number of flagged cases, increasing time needed
- Increased workload in radiology, DEXA, FLS and admin
- Radiologist workforce shortages complicate feasibility and sustainability of adoption
- Workforce adaptation: shifts in responsibilities, changing workloads, workforce planning including downstream capacity.

PRACTICAL IMPLICATIONS OF ADOPTING AI

Ethical, professional & economics challenges associated with AI in healthcare, including trust accuracy and financial implications of using AI for opportunistic detection.

- Governance & IT delays: lengthy approval, implementation process
- Financial considerations: AI, staffing and integration costs; savings from increased early identification and intervention; different cost/ benefit horizons
- Multi-team coordination: communication and alignment across multiple teams and systems
- Managing impact on workforce, workflow & workload: staff engagement, staff experience and system capacity to process true and false positives

PERCEIVED IMPACT ON PATIENT CARE

Perceived impact on pathways and experience, including diagnostic efficiency, bottlenecks, and impact on early detection

- Clinical benefits & efficiency: increased detection allows more early intervention, if there is downstream capacity (DEXA, FLS)
- Patient awareness & understanding: careful communication of opportunistic detection, and use of AI, with patients
- Patient communication & engagement: FLS is paramount in clear communication, support and pathway management for identified patients
- Changes in patient interaction & care delivery: vary by staff type

AI ADOPTION AND INTEGRATION

AI adoption in hospitals, barriers to seamless integration, and governance challenges associated with implementation.

- Integration described as protracted and complex process, requiring substantial administrative support, infrastructural modifications and cross-departmental coordination
- Governance procedures were slow, but important for safety and compliance
- Increased knowledge of local research governance, IT and IG would be beneficial
- Further developments wanted include additional algorithm training for improved AI performance, ongoing data collection, and local pilot studies.

PATIENT PERSPECTIVES OF OPPORTUNISTIC DETECTION

Overall, patients were open to adoption of the AI in fracture pathways, but had concerns about trust & loss of human oversight

- Patients viewed AI as an effective tool for early detection, but had concerns about over-reliance and loss of clinician competency
- Transparent communication essential for maintaining trust, particularly regarding AI's role in incidental findings & potential subsequent diagnosis

FUTURE POTENTIAL OF AI

Perspectives on future of AI, including impact of expanded use, wider applications, increased uptake, and improved performance

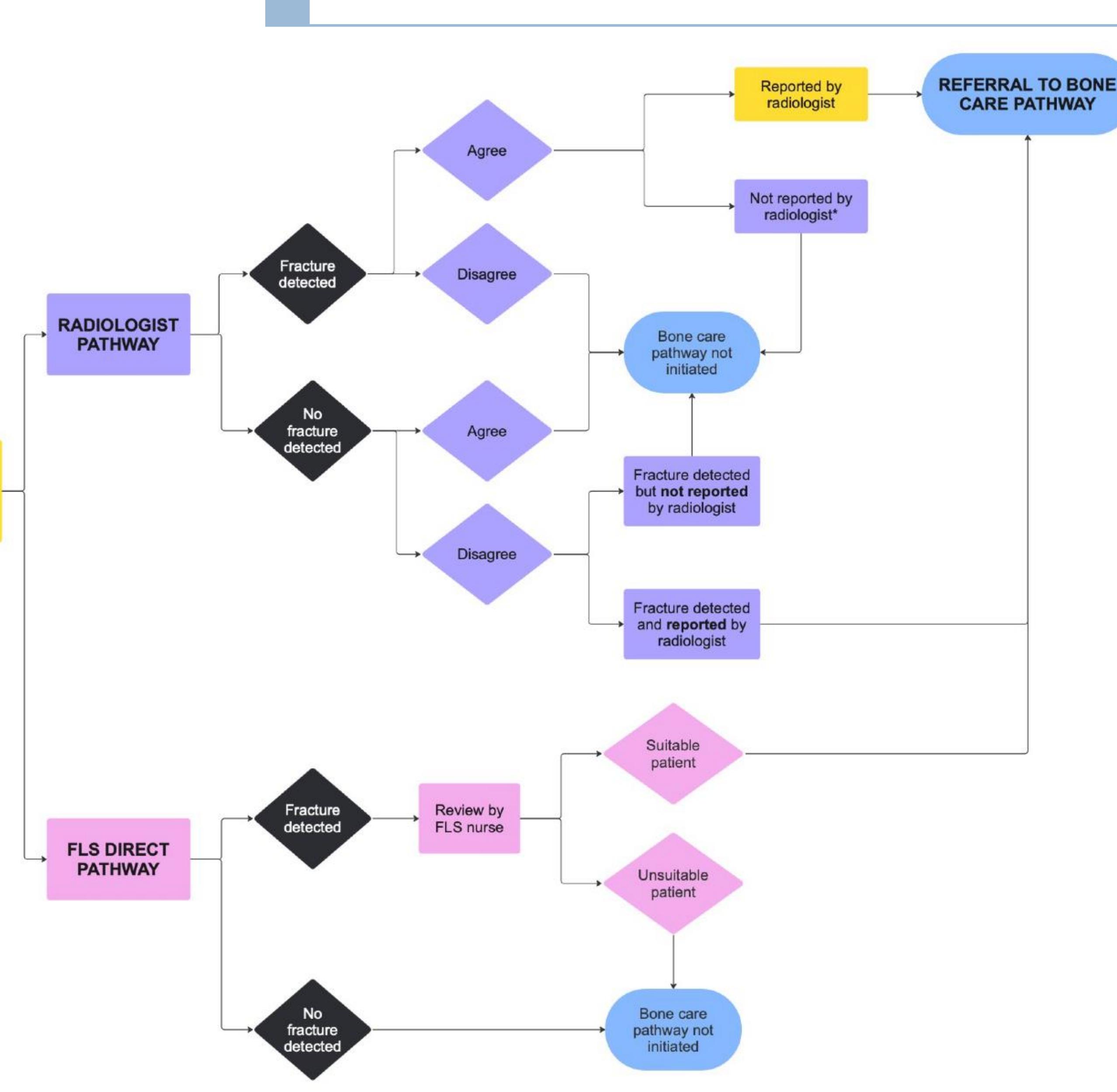
- AI could increase yield, but variability in performance was a concern
- Optimised performance and better workflow compatibility and integration is required for AI to be sustainable
- Further evidence needed (validation, evaluation, relevant RWE)
- Scaled use of AI requires careful review of systems, pathways & processes

Conclusions

AI improved opportunistic fracture detection and identification of osteoporosis patients, but introduced new complexities (i.e. increased service pressure, administrative burden)

- AI shifted and expanded responsibilities for radiologists, nurses and managers
- False positive rate necessitates radiologist review, and adds to workload without translating to patient or service benefit

Our findings suggest future studies on AI in radiology should:


- Assess impact across relevant clinical pathways (bottlenecks, resourcing, capacity)
- Explore resource requirements for sustainable use over time
- Assess consequences for patients, staff, healthcare providers and budget holders of formalizing and scaling opportunistic detections
- Explore how patient perspectives, engagement and trust change over time

Acknowledgements

This project was funded by the Artificial Intelligence in Health and Care Award, one of the NHS AI Lab programmes. The competitive award scheme was run by the Department of Health & Social Care (DHSC), supported by the National Institute for Health & Care Research (NIHR) and the Accelerated Access Collaborative (AAC).

References

- [1] Royal Osteoporosis Society. Written evidence submitted by the Royal Osteoporosis Society (DEL0233). Health and Social Care Committee, UK Parliament, 2020.
- [2] Osteoporosis. NHS inform. <https://www.nhsinform.scot/illnesses-and-conditions/muscle-bone-and-joints/conditions-that-can-affect-multiple-parts-of-the-body/osteoporosis/> (accessed March 7, 2025).
- [3] Royal College of Physicians. Fracture Liaison Service Database annual report 2024.
- [4] Public Health England. Falls and fracture consensus statement - supporting commissioning for prevention. 2017.
- [5] Office for Health Improvement & Disparities. Guidance: Falls: Applying All Our Health. GOV.UK. 2022. <https://www.gov.uk/government/publications/falls-applying-all-our-health/falls-applying-all-our-health> (accessed March 7, 2025).
- [6] National Osteoporosis Guideline Group. NOGG Clinical guideline for the prevention and treatment of osteoporosis. 2021; published online July 13. <https://www.nice.org.uk/advice/mib267> (accessed Jan 16, 2025).

