

# Balancing Fit and Accuracy: Evaluating Survival Model Projections with Immature Data in Health Technology Assessments

**H. Leleu<sup>1</sup>, J. Carette<sup>1</sup>, Q. Berkovitch<sup>1</sup>**

1 public health expertise - Cencora, Paris, France

# Background

- Estimates of future survival play a critical role in health technology assessments (HTA).
- Standard parametric models are commonly used for survival extrapolation, but flexible models have increasingly been used in HTA submissions. However, while flexible models have shown improved within-sample fit, they do not deliver more accurate future projections than standard parametric models.
- With increasingly immature data used in HTA submission, it is unclear what parametric models should be preferred if any.

# Objective(s)

- This study seeks to address whether survival extrapolations should focus on better fit to the available data or minimizing future uncertainties when survival data are immature.

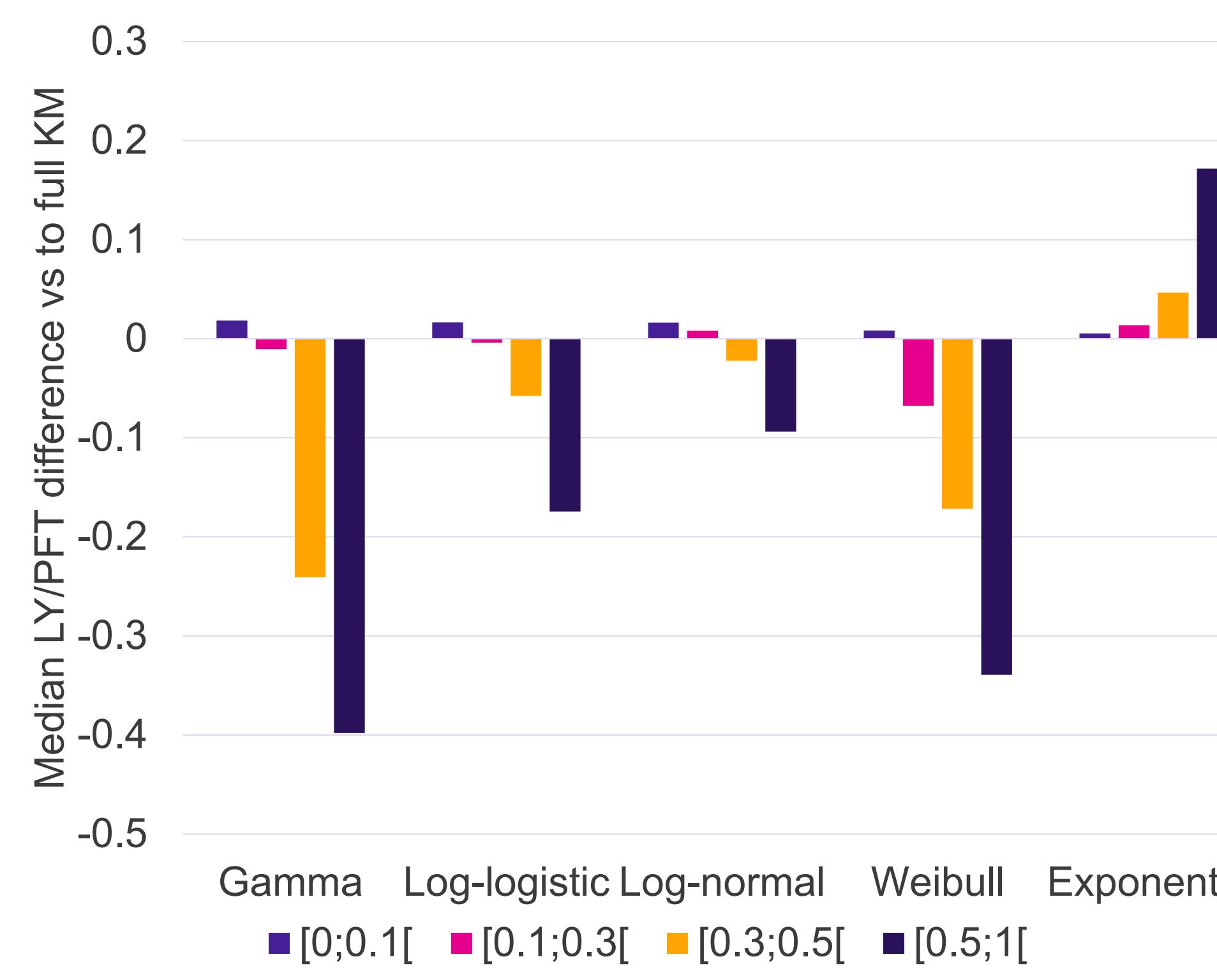
# Methods

- Survival curves from the CLEAR, CM-649, COU-AA-301, KEYNOTE-A39, KEYNOTE-A39 (8/8/24), SUNLIGHT and TROPICS-02 studies from all included arms were digitalized and corresponding pseudo-patient-level data, including censoring were reconstructed for overall survival (OS) and progression-free survival (PFS) data from 10 clinical trials with mature survivals.
- To simulate immature data, the datasets were artificially censored at 60-70%, 50%, 30%, and 20% event thresholds.
- Extrapolations were performed using five standard parametric functions (generalized gamma, Weibull, exponential, log-normal, log-logistic) for the complete and artificially censored datasets.
- Extrapolated life-years (LY) and progression-free time (PFT) were compared to the Kaplan-Meier (KM) estimates used the squared error metric to quantify future accuracy using a partitioned survival model framework with the max KM duration horizon.

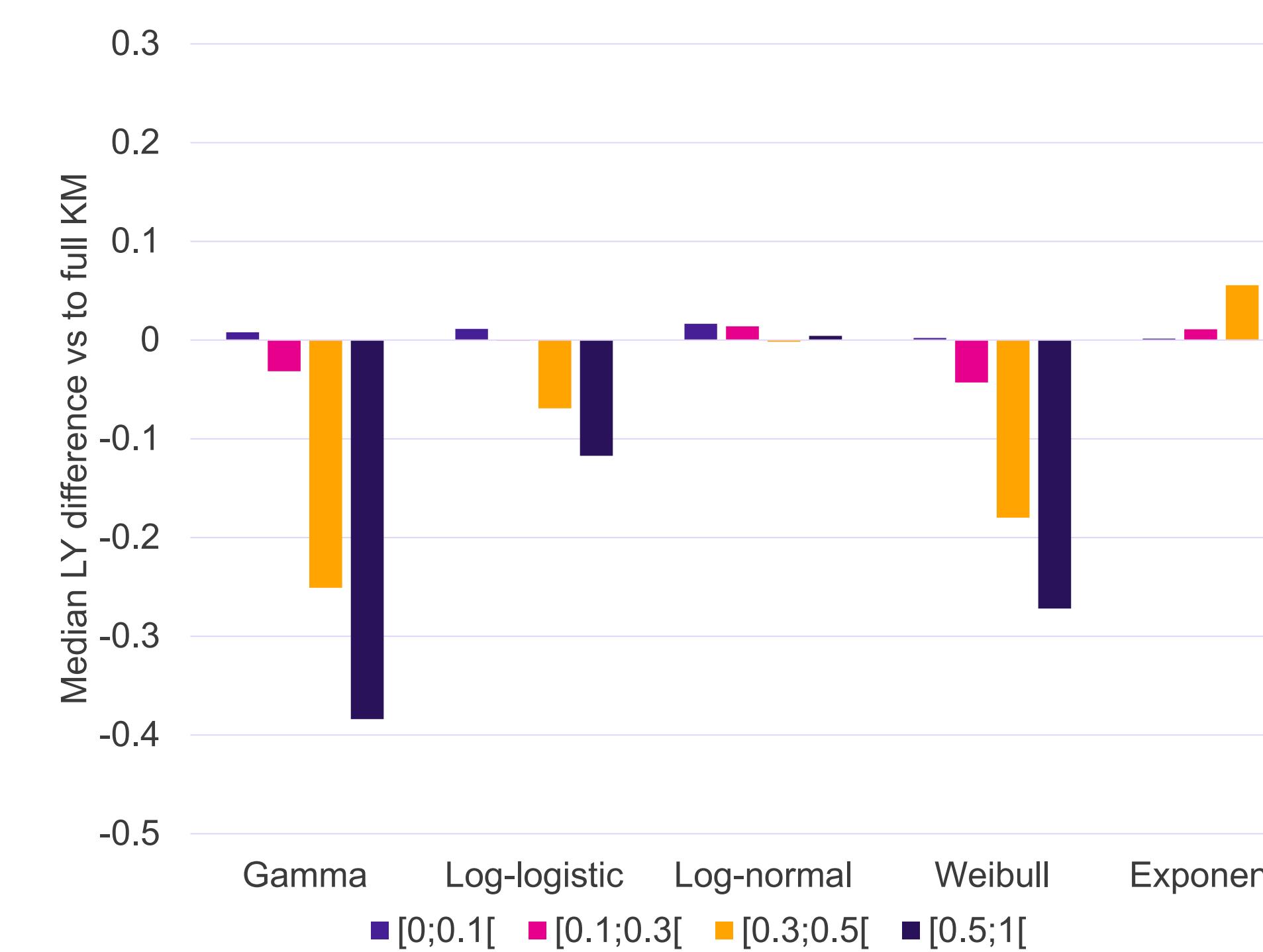
# Conclusions

- These preliminary findings, based on a limited sample of studies, highlight a critical challenge in HTA decision-making: current guidelines prioritize fit to available KM data, potentially overlooking uncertainties in future projections when data are immature.
- To improve decision-making, an alternative approach emphasizing the choice of functions to produce better long-term predictive accuracy over short-term fit may be warranted.
- Our results suggest that on average, functions with less degree of freedom include exponential and log-normal offered more conservative results compared to other functions and should be preferred when extrapolating immature data over using fit statistics to select the function.

This poster is for informational purposes only. Readers are kindly requested to cite this original work when referencing the concepts, data, or methodologies presented herein.


# Results

- Most parametric functions produced similar projections (within 2.5% on average) compared to the KM estimates with the complete dataset.
- With increasing event thresholds censorship, average uncertainty for LY/PFT estimates increased from  $\pm 5\%$  at 10%-30% threshold up to -35% to +15% over 50% threshold.
- Performance of future projection for each function varied with log-normal and exponential functions showing  $\pm 6\%$  uncertainty overall, while generalized gamma exhibited significant instability with increasing censoring thresholds.


## Figure 1. LY/PFT variations and squared error for each extrapolation functions with varying censorship thresholds



## Figure 2. Median & average LY/PFT variations for each extrapolation functions with varying censorship thresholds



**Figure 3. Average LY & PFT variations for each extrapolation functions with varying censorship thresholds**



## References

1. Motzer R, Alekseev B, Rha SY, Porta C, Eto M, Powles T, Grünwald V, Hutson TE, Kopyltsov E, Méndez-Vidal MJ, Kozlov V, Alyasova A, Hong SH, Kapoor A, Alonso Gordoa T, Merchan JR, Winquist E, Maroto P, Goh JC, Kim M, Gurney H, Patel V, Peer A, Procopio G, Takagi T, Melichar B, Rolland F, De Giorgi U, Wong S, Bedke J, Schmidinger MD, Dutta CE, Smith AD, Dutta L, Mody K, Perini RF, Xing D, Choueiri TK; CLEAR Trial Investigators. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. *N Engl J Med.* 2021 Apr 8;384(14):1289-1300. doi: 10.1056/NEJMoa2035716. Epub 2021 Feb 13. PMID: 33616314.
2. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczyłas T, Campos Bragagnoli A, Liu T, Schenker M, Yanez P, Tehfe M, Kowalszyn R, Karamouzis MV, Bruges R, Zander T, Pazos-Cid R, Hitre E, Feeney K, Cleary JM, Pouliart V, Cullen D, Lei M, Xiao H, Kondo K, Li M, Ajani JA. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. *Lancet.* 2021 Jul 3;398(10294):27-40. doi: 10.1016/S0140-6736(21)00797-2. Epub 2021 Jun 5. PMID: 34102137; PMCID: PMC8436782.
3. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, Staffurth JN, North S, Vogelzang NJ, Saad F, Mainwaring P, Harland S, Goodman OB Jr, Sternberg CN, Li JH, Kheoh T, Haqq CM, de Bono JS; COU-AA-301 Investigators. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. *Lancet Oncol.* 2012 Oct;13(10):983-92. doi: 10.1016/S1470-2045(12)70379-0. Epub 2012 Sep 18. Erratum in: *Lancet Oncol.* 2012 Nov;13(11):e464. Erratum in: *Lancet Oncol.* 2014 Aug;15(9):e365. PMID: 22995653.
4. Powles T, Valderrama BP, Gupta S, Bedke J, Kikuchi E, Hoffman-Censits J, Iyer G, Vulsteke C, Park SH, Shin SJ, Castellano D, Fornarini G, Li JR, Gümüş M, Mar N, Loriot Y, Fléchon A, Duran I, Drakaki A, Narayanan S, Yu X, Gorla S, Homet Moreno B, van der Heijden MS; EV-302 Trial Investigators. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. *N Engl J Med.* 2024 Mar 7;390(10):875-888. doi: 10.1056/NEJMoa2312117. PMID: 38446675.
5. Zhu Y, Liu K, Zhu H, Li S, Yuan D. Enfortumab vedotin plus pembrolizumab for previously untreated locally advanced or metastatic urothelial carcinoma: a cost-effectiveness analysis. *Ther Adv Med Oncol.* 2025 Jan 7;17:17588359241295544. doi: 10.1177/17588359241295544. PMID: 39776535; PMCID: PMC11705323.
6. Prager GW, Taieb J, Fakih M, Ciardiello F, Van Cutsem E, Elez E, Cruz FM, Wyrwicz L, Stroyakovskiy D, Pápai Z, Poureau PG, Liposits G, Cremolini C, Bondarenko I, Modest DP, Benhadji KA, Amellal N, Leger C, Vidot L, Tabernero J; SUNLIGHT Investigators. Trifluridine-Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. *N Engl J Med.* 2023 May 4;388(18):1657-1667. doi: 10.1056/NEJMoa2214963. PMID: 37133585.
7. Rugo HS, Bardia A, Marmé F, Cortés J, Schmid P, Loirat D, Trédan O, Ciruelos E, Dalenc F, Gómez Pardo P, Jhaveri KL, Delaney R, Valdez T, Wang H, Motwani M, Yoon OK, Verret W, Tolane SM. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPICS-02): a randomised, open-label, multicentre, phase 3 trial. *Lancet.* 2023 Oct 21;392(10111):1423-1433. doi: 10.1016/S0140-6736(23)01245-X. Epub 2023 Aug 23. PMID: 37633306.

Presented at: ISPOR Annual European Congress;  
10-12 November 2025; Glasgow, UK.  
Funded by public health expertise - Cencora.