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BACKGROUND & OBJECTIVES * SHAP analysis identified lower ALT, sodium, hemoglobin, and albumin; higher age, BUN, and

creatinine; and BMI (U-shaped) as key predictors of CTRCD risk (Figure 2).

* Advances in lung cancer (LC) therapy have significantly improved patient survival but have also +  In the ECG-inclusive model, additional predictors included QTc prolongation, atrial

increased the risk of cancer therapy—related cardiac dysfunction (CTRCD).! fibrillation, and supraventricular arrhythmia (Figure 2)
* Machine learning (ML) offers the potential for early and accurate detection of CTRCD by * Clinical thresholds at age >70.5 years, heart rate >87 bpm, BMI <18 or >25 (U-shaped), and
integrating complex clinical and treatment-related data.” albumin <4.19 g/dL, indicating physiologic tipping points for increased risk (Figure 3).

* Although electrocardiograms (ECGs) provide rich information on cardiac function, their
unstructured data format has limited their use in previous CTRCD prediction models.?

Table 2. Performance of four models with/without ECG features (using undersampling)
Model Precision |Sensitivity

AUROC AUPRC | Accuracy Specificity F1

* Study aims: (1) To develop ML-based models for early detection of CTRCD in patients with LC, and (including ECG) (PPV) (Recall)

(2) To evaluate whether the addition of unstructured ECG data improves model performance. LASSO 0.8348 0.5081 0.7089 0.2903 0.9000 0.6812 0.4390
XGBoost 0.8797 0.5313 0.7342 0.2963 0.8000 0.7246 0.4324
METHODS RF 0.9304 0.6782 0.7468 0.3214 0.9000 0.7246 0.4737
5D NB 0.8696 0.3571 0.7722 0.3571 1.0000 0.7391 0.5263
ata Source Viodel
NTUH-iMD, the electronic health record database at National Taiwan University Hospital (NTUH) (not including AUROC AUPRC | Accuracy Pr(epclii;;)n S?;:ict;\llli)ty Specificity F1
» Study Design ECG)

Retrospective case-control study LASSO 0.8435 0.5648 0.7089 0.2759 0.8000 0.6957 0.4103
> Patient Population XGBoost 0.9377 0.6974 0.8608 0.4737 0.9000 0.8551 0.6207
Inclusion criteria: RF 0.9145 0.6987 0.7848 0.3600 0.9000 0.7681 0.5143
NB 0.8891 0.4039 0.8101 0.3913 0.9000 0.7971 0.5455

e Patients with newly diagnosed primary LC who initiated first lung cancer treatment at NTUH

Exclusion criteria:

Figure 2. Interpretation of SHAP Plot — model with (Left) / without (Right) ECG features
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Figure 1. Visualization of feature collection window
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* Model Interpretation

CONCULSION

 Both models showed good performance in early CTRCD detection among LC patients.

- Applied SHAP to identify top 20 influential features, and define clinical thresholds

RESULTS

 ECG features offered modest incremental value, primarily enhancing interpretability through

* From 6,032 newly diagnosed LC patients, 52 CTRCD cases and 341 controls were identified heart rate—related patterns rather than predictive power.
for model development. * Further studies with multicenter data and larger sample sizes are needed to validate the findings.
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