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Background

• Network meta-analysis (NMA) allows for the simultaneous comparison of multiple treatments by 
combining direct and indirect evidence from a network of clinical trials. This method yields robust 
estimates of relative treatment effects when head-to-head trials are unavailable.

• The transitivity assumption is a core prerequisite for valid indirect comparisons in NMAs. Transitivity 
requires that studies be comparable in their distributions of key effect modifiers, such as baseline 
patient characteristics (BCxs), so that indirect estimates are not biased. If trials compare A versus B and 
B versus C, transitivity implies that the trial populations are sufficiently similar that participants could, 
in principle, have been randomized to any of the evaluated treatments.

• Substantial differences in BCxs across studies can lead to violation of the transitivity assumption and 
result in distributional drift.

• We propose a clustering framework to identify and quantify distributional drift in BCxs, thereby 
improving the internal validity and interpretability of NMA results.
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Figure 2: Study-level Cluster Map with Centroids

Figure 3: Jensen-Shannon Divergence by 
Baseline Characteristic

• The within-cluster sum of squares (WCSS) curve demonstrated a clear bend at k = 2, indicating that 2 
clusters were optimal for the analysis. This suggested a natural grouping structure among studies such 
that increasing the number of clusters beyond two did not substantially reduce within-cluster variance. 
This confirmed the stability and adequacy of the two-cluster solution (Figure 1).

• The K-means clustering model partitioned the 15 studies into Cluster 1 (n = 12) and Cluster 2 (n = 3). 
This indicated that 12 studies shared broadly similar BCx distributions, whereas the 3 studies in Cluster 
2 exhibited distinct BCx patterns (Figure 2).

• Jensen-Shannon Divergence: Jensen-Shannon divergence values confirmed that X1 (0.585), X5 (0.422), 
and X6 (0.362) exhibited the highest levels of distributional drift. This indicated that these variables 
contributed most strongly to heterogeneity between clusters. The remaining BCxs demonstrated 
comparatively lower drift, reflecting greater consistency in their distributions across clusters (Figure 3)

Results

• RIA revealed that X1 (34%), X5 (25%), and X6 (13%) contributed most to heterogeneity between 
clusters, highlighting their influence on study comparability (Figure 4).

• X1, X5, and X6 showed clear distributional differences between Cluster 1 and Cluster 2. X1 showed 
the greatest shift in both peak and shape. X6 showed a moderate change with some overlap between 
clusters. X5 showed the smallest difference, though  a smaller but still visible difference (Figure 5).
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Figure 4: Relative Importance of Baseline 
Characteristics

Conclusion

• Studies with similar BCxs were identified and grouped, quantifying the key drivers of heterogeneity 
using Jensen-Shannon divergence and relative importance analysis. The most comparable subsets of 
BCxs were then identified.

• This novel method identified outlier trials with mismatched baseline profiles, enabling focused 
sensitivity analyses. Conducting the NMA with and without these clusters facilitates an assessment of 
the stability treatment effect stability and rankings. #

• This method also serves as a valuable pre-processing step by identifying non-comparable studies, 
thereby supporting more robust and reliable evidence synthesis.
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Figure 1: Cluster Selection Elbow Plot

Figure 5: Density Plots of Key BCxs by Cluster (X1, X5, X6)

Objectives

• Identify and group studies with comparable distributions of BCxs to support stratified analyses or 
targeted sensitivity checks that help preserve transitivity.

• Quantify the degree and drivers of distributional drift in BCxs to evaluate its potential impact on NMA 
results. 

Methods

• A clustering analysis was performed to assess similarity across studies and detect early signals of non-
comparability in BCxs. This approach generated clusters of studies that were more homogeneous in 
their BCx distributions while highlighting those that differed substantially. Such heterogeneity between 
clusters may indicate potential bias in indirect comparisons within the NMA.

• A simulated dataset comprising 15 studies was generated. Each study reported eight BCxs.
• K-means clustering was performed using the Hartigan and Wong algorithm.4 The choice of number of 

clusters (k) was guided by the elbow method. Each cluster is represented by a centroid that 
approximates optimized, lower-entropy marginal distributions of the BCxs (Figure 1). 

• BCxs were ranked according to their contribution to variability across studies. Those contributing most 
to observed distributional drift were identified as primary drivers of heterogeneity between clusters. 

• Jensen-Shannon Divergence (JSD) was used to quantify the magnitude of marginal distribution shifts 
for each BCx across clusters. JSD measures the dissimilarity of BCx distributions between clusters. Lower 
JSD values indicate greater similarity in BCx distributions across studies, while higher values reflect 
greater distributional drift and potential threats to transitivity.

• Relative importance analysis (RIA) was performed to determine the primary drivers of heterogeneity 
between clusters. While JSD quantifies the extent of drift, RIA identifies its key contributors by ranking 
BCxs according to their influence on cluster separation. Higher RIA values indicate the BCxs most 
responsible for distributional drift and heterogeneity between clusters.

• All analyses were conducted using R-V4.5.1 software.
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