

# Factors Associated With Positive Cost-Effectiveness Judgments in HIRA Drug Reimbursement Decisions : An 8-Year Retrospective Review

HPR91

Lee J, Jung Y, Park K, Lee S, Kim K

HIRA(Health Insurance Review & Assessment Service), Korea, Republic of (South)

## INTRODUCTION

Since 2007, South Korea has implemented pharmacoeconomic evaluation as part of its positive listing system to selectively reimburse new drugs that demonstrate superior clinical and economic value compared with existing therapies. This framework provides an evidentiary basis for determining whether new drugs represent value that is acceptable for public reimbursement. In principle, drugs that show improved clinical outcomes relative to standard treatments are subject to pharmacoeconomic evaluation, and the results are summarized using the Incremental Cost-Effectiveness Ratio (ICER).

In reimbursement decision-making, the Health Insurance Review & Assessment Service (HIRA), Korea's national HTA agency, applies several reimbursement assessment criteria, including clinical usefulness, cost-effectiveness, budget impact, reimbursement status in reference countries, and conditions to be fulfilled by the manufacturer (e.g., Risk-Sharing Agreements). Rather than applying a fixed ICER threshold, HIRA evaluates cost-effectiveness flexibly, taking into account disease severity, societal disease burden, quality-of-life impact, and the degree of therapeutic innovation, as stipulated in the relevant regulatory guidelines.

This study analyzed reimbursement cases from the most recent eight years (2017–2024) to examine how these appraisal factors influence the level of accepted ICERs. The objective is to identify the key factors associated with positive cost-effectiveness judgments and to assess whether actual evaluation practices align with the intended objectives of the pricing and reimbursement system.

## OBJECTIVE

### Primary Objective: T-test

- Differences in ICER according to Appraisal Factors

### Secondary Objective: Multiple Regression Analysis

- Correlation between Appraisal Factors and ICER

## METHOD

### Inclusion and exclusion criteria

- New drugs that underwent pharmacoeconomic evaluation and received positive reimbursement decisions from the Pharmaceutical Benefit Coverage Assessment Committee between 2017 and 2024. In principle, drugs were classified by active ingredient; however, when a single ingredient was evaluated for multiple indications resulting in separate ICERs, each indication was treated as a distinct analysis case.
- Case that passed committee review but was ultimately not reimbursed due to failure in final price negotiation was excluded from analysis. ICER cases below KRW 10 million/QALY (n = 1) were considered outliers due to their limited sensitivity to appraisal factors and were excluded.
- ICER values were recorded as reviewed and determined by the Committee, and in cases with a risk-sharing agreement (RSA), the accepted ICER reflected the actual reimbursed price under RSA terms.
- As a result, a total of 42 cases (41 unique ingredients) were selected for evaluation.

Table 1. Independent variables for T-test

| Assessment criteria        | Independent variables                                                         |                                                                  |
|----------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| Clinical usefulness        | Availability of alternatives (Yes=1, No=0)                                    | Disease severity : Life-threatening disease (Yes=1, No=0)        |
| Budget impact              | Number of target patient population -<br>Based on 200/1,000 ( $\geq 1, < 0$ ) | Absolute budget impact : Based on KRW 10B, 50B ( $\geq 1, < 0$ ) |
| Listing in Reference       | Countries                                                                     | Based on 3 countries ( $\geq 1, < 0$ )                           |
| Risk-Sharing Agreements[2] |                                                                               | Eligible for RSA (Eligible=1, Not Eligible=0)                    |

### Data extractions and analyses

#### 1. Variable Specification

- **Dependent variable:** ICER (Incremental Cost-Effectiveness Ratio)
- **Control variables:** Year of committee appraisal (2017–2024), reimbursement status (reference: reimbursed), economic evaluation type (cost-effectiveness analysis, cost-utility analysis).
- **Independent variables:** T-test [Table 1], Multiple regression analysis [Table 2]

#### 2. Statistical Analysis

- Microsoft Excel (2021)
- Level of statistical significance was set at 5%.

Table 2. Independent variables for Multiple regression analysis

| Assessment criteria                                                      | Representative variable                                           | Multicollinearity variable <sup>1)</sup> |
|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| Clinical usefulness                                                      | Disease severity                                                  | Availability of alternatives             |
| Budget impact                                                            | Number of target patient population (based on 200 <sup>2)</sup> ) | Absolute budget impact                   |
| Reference countries' reimbursement status (in at least 3 <sup>2)</sup> ) |                                                                   | -                                        |
| Risk-Sharing Agreements                                                  |                                                                   | -                                        |

1) Multiple regression analysis is a statistical technique that can identify the independent effect of a specific variable after controlling for the influence of other variables when multiple independent variables simultaneously affect a dependent variable. When all appraisal factors are included as independent variables, a high degree of correlation among variables can cause a "multicollinearity problem." To address this, highly correlated variables were merged into representative variables (single composite indicators) and used in the regression analysis

2) The criteria of 200 target patients and reference countries' reimbursement status (in at least three reference countries) reflect meaningful thresholds conventionally used in reimbursement appropriateness assessments. A target patient number of 200 distinguishes rare or small patient populations, whereas a reimbursement status in three reference countries is a requirement for waiving pharmacoeconomic data submission.

## RESULTS

### Primary Results - T-test

#### : Differences in ICER according to Appraisal Factors

##### - (Clinical Usefulness)

- For availability of alternatives, ICER was slightly higher when alternative drug was not available, but the difference was not statistically significant ( $p > 0.05$ ).
- Regarding disease severity, drugs indicated for life-threatening conditions showed a mean ICER of approximately KRW 42M per QALY, which is KRW 12.5M higher than for non-life-threatening diseases.

##### - (Budget Impact)

- A trend toward higher mean ICERs was observed in drugs for small patient populations, but the difference was not statistically significant; Absolute budget impact did not significantly affect mean ICER.

##### - (Risk-Sharing Agreement)

- Drugs subject to risk-sharing agreements demonstrated a significantly higher mean ICER compared to those without such arrangements.

##### - (Reference countries' Reimbursement Status)

- The number of reference countries with reimbursement did not significantly affect mean ICER, though the majority of evaluated drugs (all but two) were reimbursed in three or more countries.

Table 3. T-test result - Differences in Mean ICER by Appraisal factors

| Assessment criteria                           | Group               | No. of Drugs | Mean ICER (KRW/QALY) | T-test       |  |
|-----------------------------------------------|---------------------|--------------|----------------------|--------------|--|
|                                               |                     |              |                      | Significance |  |
| Availability of alternatives                  | Yes                 | 38           | 35,768,138           | n.s          |  |
|                                               | No                  | 4            | 37,240,467           |              |  |
| Disease severity:<br>Life-threatening disease | Yes                 | 21           | 42,242,788           | *            |  |
|                                               | No                  | 21           | 29,573,932           |              |  |
| Target patient population                     | Based on 200        | 33           | 35,201,668           | n.s          |  |
|                                               | <200                | 9            | 38,499,565           |              |  |
| Absolute budget impact (KRW)                  | Based on 1,000      | 22           | 33,152,268           | n.s          |  |
|                                               | <1,000              | 20           | 38,940,061           |              |  |
| RSA                                           | Based on 10 billion | 23           | 37,439,185           | n.s          |  |
|                                               | <10B                | 19           | 34,055,255           |              |  |
| Listing in Reference                          | Based on 50 billion | 7            | 41,265,143           | n.s          |  |
|                                               | <50B                | 35           | 34,837,003           |              |  |
| RSA                                           | Eligible            | 26           | 40,519,602           | *            |  |
|                                               | Not Eligible        | 16           | 28,415,091           |              |  |
| Listing in Reference                          | ≥3                  | 40           | 36,190,416           | n.s          |  |
|                                               | <3                  | 2            | 30,267,247           |              |  |

\*p<0.05: significant; n.s, not significant

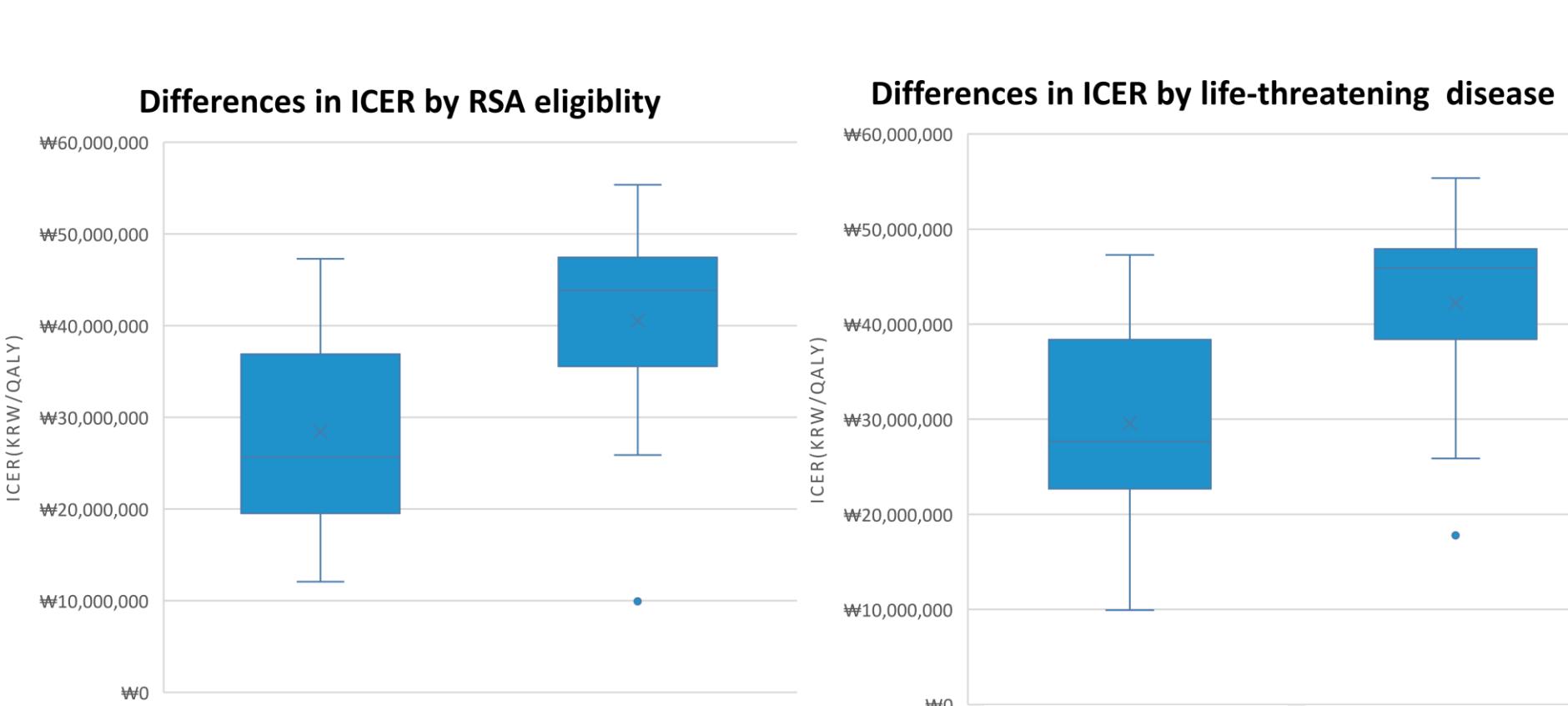

1USD = 1,426 KRW (NOV, 2025)

Table 4. Results of Multiple Regression Analysis

| Variables                                         | Coefficient | Significance |                                                    |   |
|---------------------------------------------------|-------------|--------------|----------------------------------------------------|---|
|                                                   |             |              | Y intercept                                        |   |
| Clinical usefulness                               | 7,481,105   | *            | 31400528.04                                        | - |
| Budget impact                                     | -6,634,205  | n.s          | Life-threatening disease (Yes)                     |   |
| Reimbursement status in reference countries (≥ 3) | 1,914,475   | n.s          | Number of target patient population ( $\geq 200$ ) |   |
| RSA (Eligible)                                    | 10,761,013  | *            | RSA (Eligible)                                     |   |

\*p<0.05: significant; n.s, not significant

1USD = 1,426 KRW (NOV, 2025)



## DISCUSSION & CONCLUSIONS

This study aimed to analyze whether reimbursement assessment criteria influenced the acceptability threshold of ICER for new drugs listed for reimbursement over the past eight years (2017–2024), and to examine if assessment factors specified by HIRA regulations are reflected in actual reimbursement decision-making, with analysis conducted using t-test and multiple regression statistical methods.

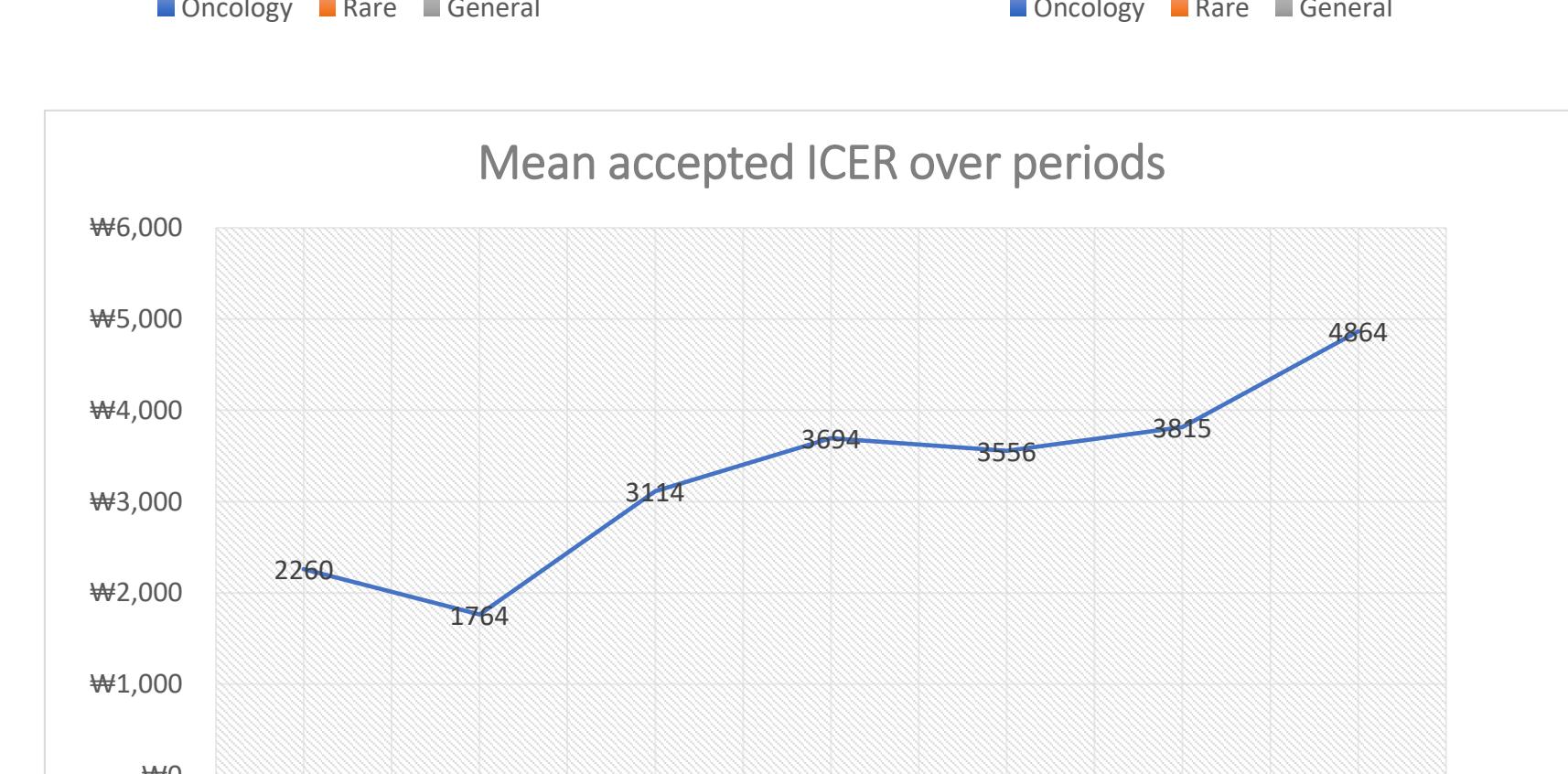
Results from t-test and multiple regression revealed that drugs for life-threatening diseases and drugs subject to risk-sharing agreements had significantly higher ICERs ( $p<0.05$ ). This suggests that clinical severity may act as an adjustment factor for the cost-effectiveness threshold during reimbursement decision processes. Additionally, the observation of higher ICERs for drugs subject to risk-sharing agreements indicates that, even under greater uncertainty about therapeutic effects, relatively higher cost-effectiveness may be permitted due to the presence of financial risk dispersal mechanisms.

Ultimately, this study demonstrates that economic evaluation does not rely on a single linear decision rule, but rather reimbursement decisions result from a contextual process considering disease characteristics, clinical value, and budget management tools in a comprehensive manner.

Nevertheless, limitations include the relatively small sample size for rare and special disease groups, requiring caution in interpreting results. As this analysis only addressed newly listed drugs and official evaluation criteria, there may exist additional value elements influencing new drugs that were not captured in this study.

Therefore, in addition to currently considered evaluation criteria, continuous exploration and discussion are needed regarding elements that reflect the clinical, social, and patient-centered values of drugs.

## REFERENCES


1. 「Detailed Evaluation Criteria for New Drugs Subject to Negotiation」, 1.1.1. Selection criteria for alternative drugs for drug cost comparison, Drugs (including treatment methods) currently used for the relevant indication; drugs included within the same treatment scope as the indication according to approval and reimbursement standards (for anticancer drugs, includes announced regimens when applicable); drugs indicated in formularies, textbooks, clinical guidelines, or clinical research articles are selected.
2. 「Detailed Evaluation Criteria for New Drugs Subject to Negotiation」, 1.8. Determination of eligibility for risk sharing, In any of the following cases: (ex, When an anticancer or orphan drug is used for a serious disease threatening survival, for which alternative or equivalent drugs or treatments do not exist.)
3. Kennedy, P. (2008). A Guide to Econometrics (6th ed.). Malden, MA: Blackwell Publishing.

## CONTACT INFORMATION

Jiwon, Lee

Health Insurance Review & Assessment Service (HIRA), South Korea

E-mail: leejiwongg@hira.or.kr



Mean accepted ICER over periods