

Incorporating Environmental Impacts Into Budget Impact Models: A Case Study of CAR-T Therapies

Erwan Autin, Engagement Manager, HEOR Access France

Authors: Erwan Autin, MSc, Mario Pozzar, MSc, Margot Dupuy, MSc, Anne-Line Couillerot, MSc, José Fernandes Soares, MSc

November 11, 2025

Study Objective

Context

Growing interest and reflections in France on the integration of environmental impacts of health care technologies:

- **HAS' health-environment roadmap¹**
- **Propositions in Social Security Bill²**

Objectives

Explore and illustrate how environmental impacts can be:

- **Identified**
- **Quantified**
- **Integrated into budget impact models (BIMs)**

How?

We conducted a **case study comparing CAR-T therapy with conventional chemotherapy** in the French healthcare context.

¹HAS, Feuille de route santé-environnement, 2023. https://has-sante.fr/jcms/p_3475967/fr/la-has-adopte-une-feuille-de-route-sante-environnement

²PLFSS 2024. <https://www.legifrance.gouv.fr/loa/id/JORFTEXT000048668665>

Methods

A targeted literature review was conducted to **identify key frameworks for integrating environmental impacts** into health technology assessments.

→ We identified the NICE typology,¹ article by Williams et al. (2023)², and the French ECOVAMED tool.³

A budget impact model was built:

- **To measure financial impact** for the French national health insurance
- **And adapted to incorporate environmental impact** through **transport-related emissions**

We measured and valued transport-related emissions:

- **Using data on travel patterns** (mean distance from hospital depending on therapy⁴) and **standard carbon intensity factors**.⁵
- Emissions were **expressed in kgCO₂-equivalent** and **valued using the official national carbon price**⁶ (€83.56/ton).

1. Toolan M, Walpole S, Shah K, et al. Environmental impact assessment in health technology assessment: principles, approaches, and challenges. International Journal of Technology Assessment in Health Care. 2023;39(1):e13. <https://doi.org/10.1017/s026646232300041>

2. Williams, Jake T.W. et al. Methods to Include Environmental Impacts in Health Economic Evaluations and Health Technology Assessments: A Scoping Review. <https://doi.org/10.1016/j.jval.2024.02.019>

3. ECOVAMED. <https://www.ecovamed.com>

4. Bonastre J, Mobillion V, Or Z, Touré M. L'accès aux soins en cancérologie : évolution de l'offre et recours aux soins entre 2005 et 2012. Questions d'économie de la santé 2017, n°221

5. BPI France <https://bigmedia.bpirance.fr/nos-dossiers/quelle-est-le-premier-carbone-d'une-voiture-electrique-vs-thermique-tout-savoir>

6. Journal Officiel <https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000048728032>

Results: Methods for Integrating Environmental Impact in HTA From Literature

Results From Published Literature

NICE identified **four approaches to account for environmental impacts in HTA**.¹

- 1 **Information Conduit:** republishing information in the public domain or submitted, in a standardized way or as provided
- 2 **Environment-Focused Evaluation:** environmental impact assessment outside specific evaluation of health economics outcomes
- 3 **Parallel Evaluation:** specific environmental assessment communicated alongside health economics assessment
- 4 **Integrated Evaluation:** framework enabling clinical, financial and environmental assessment in a quantitative and synthetic analysis

¹Toolan M, Walpole S, Shah K, et al. Environmental impact assessment in health technology assessment: principles, approaches, and challenges. International Journal of Technology Assessment in Health Care. 2023;39(1):e13. <https://doi.org/10.1017/s0266462323000041>

Results: Methods for Integrating Environmental Impact in HTA From Literature

Literature review illustrates those approaches with published evaluations¹:

Parallel Evaluation	Integrated Evaluation
<p>Five methods identified:</p> <ul style="list-style-type: none">➢ Consideration of environmental impacts during HTA deliberative decision-making process➢ Calculation of costs and DALY integrating environmental impact, with or without synthetic indicator (ICER) computation➢ Calculation of an incremental carbon footprint effectiveness ratio (Co2-e / <u>efficacy unit</u>)➢ Calculation of an incremental carbon footprint cost ratio (Co2-e/\$)➢ Multi-criteria decision analysis (MCDA), including environmental impact and other criteria, weighted according to decision-maker preferences to construct a unique quantitative indicator	<p>Three methods identified:</p> <ul style="list-style-type: none">➢ Consider environmental impacts costs in CEA or CUA➢ Include environmental impacts in health outcomes➢ Adjust willingness-to-pay thresholds to reflect environmental impact

¹Williams, Jake T.W. et al. Methods to Include Environmental Impacts in Health Economic Evaluations and Health Technology Assessments: A Scoping Review. <https://doi.org/10.1016/j.jval.2024.02.019>

Results: Methods for Integrating Environmental Impact in HTA From Literature

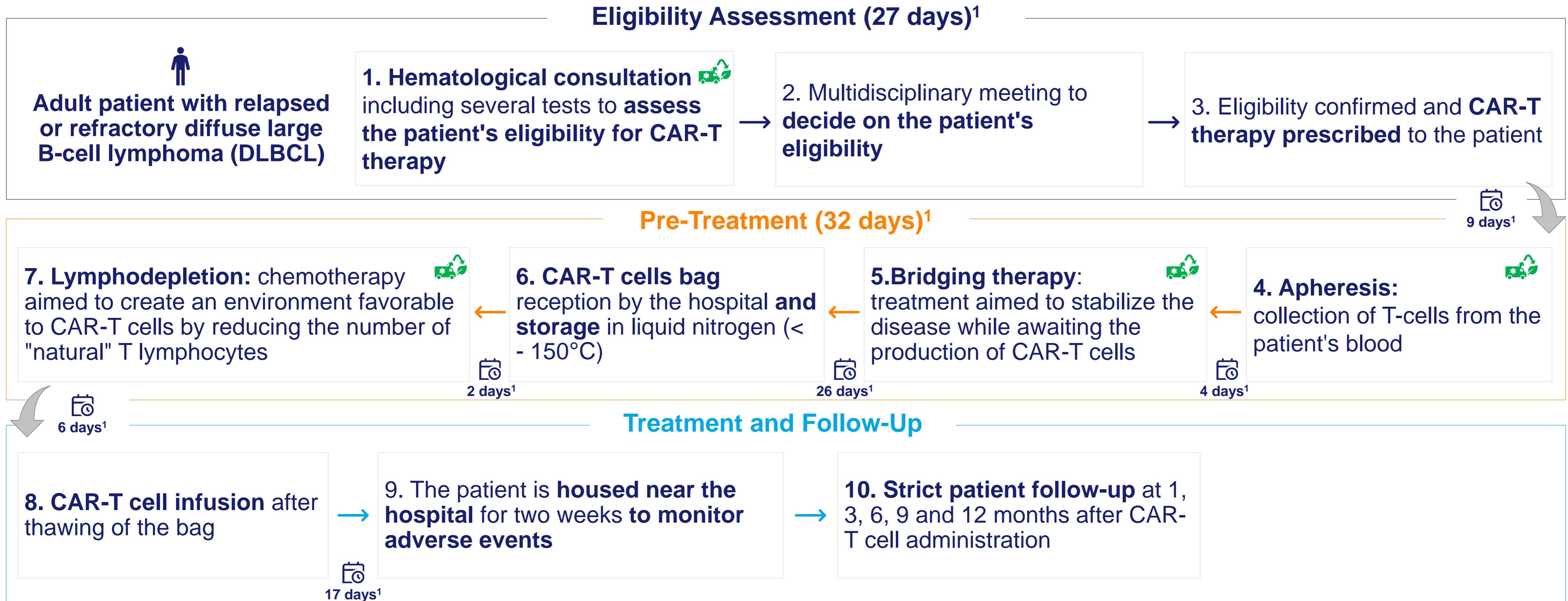
Literature review illustrates those approaches with published evaluations¹:

Main Impacts Identified	Measures
Greenhouse gas emissions Energy consumption Water consumption Waste production	<ul style="list-style-type: none">> 27% of studies bases on life cycle analyses (LCA) from raw material extraction, production, usage, to disposal> A majority of publications (46%) used carbon footprint estimations for one or several parts of healthcare product lifecycle> 25% of publications were based on published literature to estimate environmental impact> One article converted healthcare costs in carbon footprint from <u>NHS carbon intensity estimate</u> (0.566 kg CO2-e /£)

¹Williams, Jake T.W. et al. Methods to Include Environmental Impacts in Health Economic Evaluations and Health Technology Assessments: A Scoping Review. <https://doi.org/10.1016/j.jval.2024.02.019>

Results: Methods for Integrating Environmental Impact in HTA From Literature

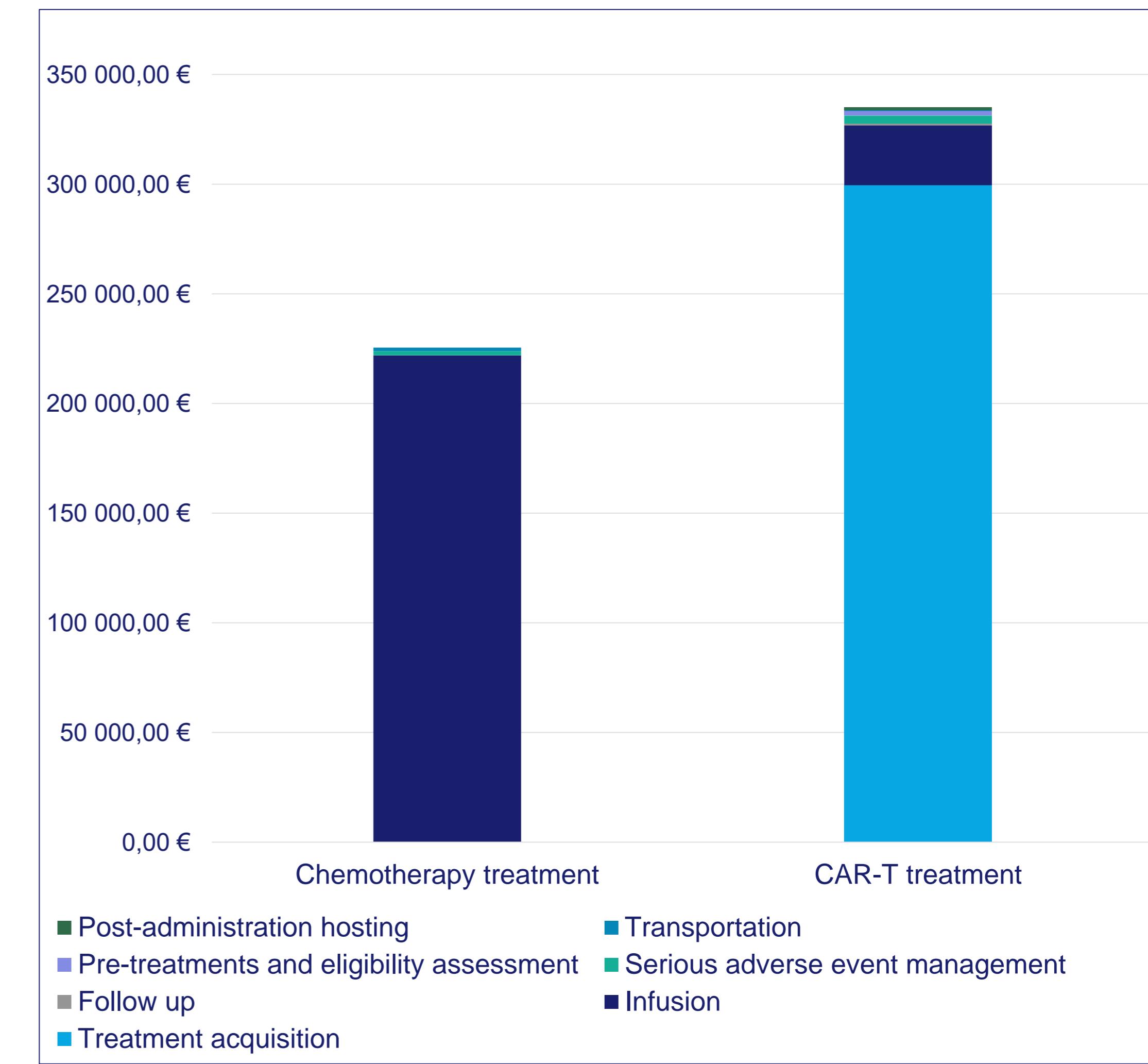
Conclusions From Literature


- > Several methodologies to measure, value, and assess environmental impacts
- > Which framework to consider for the analysis:
 - Perspective: national, regional?
 - Life-cycle scope: from production, usage only, until disposal?
 - Time horizon: within product lifecycle, long enough to account for potential environmental consequences?
- > Result criteria:
 - Costs, health outcomes, carbon dioxide equivalent?
 - Aggregated indicator, ponderations?
- > How do we choose: health gains or strong environmental value?

We propose a simple, practical (and limited) approach using a budget impact model through a case study estimating transport-related emissions.

Results: Case Study

Why considering CAR-T Therapies for the case study?


Innovative treatment approach, archetypal case: one-off injection compared to chronic treatment by chemotherapy.

Results: Standard Budget Impact Estimations

Case study: chemotherapy versus CAR-T for a patient treated over one year.

National Health Insurance Perspective		
Costs	Chemotherapy treatment	CAR-T treatment
Transportation	€1,515.19	€466.21
Pre-treatments and eligibility assessment	€0.00	€2,082.72
Infusion	€221,871.86*	€27,310.83*
Treatment acquisition	€0.00 (included in infusion cost)	€299,500.00
Serious adverse event management	€2,006.97	€3,674.10
Follow up	€53.08	€778.70
Post-administration hosting	€0.00	€1,200.00
Total	€225,447.10	€335,012.56

*GHM 17M154 «Lymphomes et autres infections malignes lymphoïdes», 13 cycles of chemotherapy. *GHM 17M154 «Lymphomes et autres infections malignes lymphoïdes» + supplément «CTC».

Results: Estimating Transport-Related Impact

Case study: chemotherapy versus CAR-T for a patient treated over one year.

National Health Insurance Perspective		
Costs	Chemotherapy treatment	CAR-T treatment
Transportation	€1,515.19	€466.21
Carbon Emissions	€10,320.00	€7,939 .00
Pre-treatments and eligibility assessment	€0.00	€2,082.72
Infusion	€221,871.86	€27,310.83
Treatment acquisition	€0.00	€299,500.00
Serious adverse event management	€2,006.97	€3,674.10
Follow up	€53.08	€778.70
Post-administration hosting	€0.00	€1,200.00
Total	€235,767.10	€342,951.56

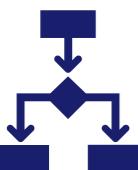
Measure:

- Mean distance for **chemotherapy** treatment in France: **25 km¹/journey**
- **CAR-T** infusion at reference centers: assumption of a doubled distance compared to chemotherapy services²: **50 km/journey**

Valuation:

- Carbon footprint per km (car) = **190 kgCO2e/km** (BPI France)³
- Monetary valuation: 83,56 € per ton of CO2⁴

	Chemotherapy	CAR-T
Patient	Anual frequency of administration 13 roundtrip : $13 \times 25 \times 2 = 650 \text{ km}$ ➢ 123,500 kgCO2e ➢ €10,320	4 roundtrip (eligibility assessment, apheresis, bridging therapy, lymphodepletion & infusion): $4 \times 50 \text{ km} \times 2 = 400 \text{ km}$ ➢ 76,000 kgCO2e ➢ €6,351
Caregiver	No specific additional roundtrip considered	At least 1 roundtrip during infusion: $2 \times 50 \text{ km} = 100\text{km}$ ➢ 19,000 kgCO2e ➢ €1,588
Total	€10,320 each year	€7,939 at infusion only


Exploratory analysis:

- Using parisian public hospitals' tool⁵

	Chemotherapy	CAR-T
Hospital stay	➢ 151.12 kgCO2e ➢ €12.63	➢ 339.82 kgCO2e ➢ €28.40

1 Bonastre J, Mobillion V, Or Z, Touré M. L'accès aux soins en cancérologie : évolution de l'offre et recours aux soins entre 2005 et 2012. Questions d'économie de la santé 2017, n°221. 2 YESCARTA - Avis CEESEP du 29 août 2023 https://www.has-sante.fr/upload/docs/application/pdf/2023-11/yescarta_29082023_avis_economique.pdf. 3 BPI France <https://bigmedia.bpfrance.fr/nos-dossiers/quelle-est-lempreinte-carbone-dune-voiture-electrique-vs-thermique-tout-savoir>. 4 Journal Officiel <https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000048728032>. 5 Outil Carbone ® <https://www.aphp.fr/careboner-un-outil-pour-decarboner-le-soin-mis-la-disposition-de-tous-les-professionnels-de-sante>

Conclusions

- Incorporating environmental externalities **change the net budget impact** and highlight **societal costs not captured** in standard models
- Environmental and societal impacts **can differentiate a treatment from its comparators**
- These impacts can **influence health economic outcomes and decision-making**
- This approach should **extend to other lifecycle stages** (e.g., production, distribution, disposal) to derive relevant information
- To document these impacts, **appropriate data collection is key**
- These analyses enable **extending the scope** of budget impact analysis **beyond a payer perspective** (hospitals, healthcare professionals, caregivers...)
- **Broader integration** into BIMs could support more **sustainable health decision-making**, especially as French institutions are reflecting to move toward environmental inclusion in HTA and pricing
- **Standardized guidance** will be **essential** to ensure comparability and avoid methodological variability

Thank You

Let's Keep in Touch

✉ erwan.autin@alirahealth.com

👉 www.alirahealth.com

LinkedIn icon @Alira Health

X icon @AliraHealth