

A Systematic Literature Review of the Mitigation Strategies to Overcome the Risk for Confounding of Overall Survival in Trials With Crossover/Treatment Switching Evaluated in Health Technology Assessments of Treatments for Select Tumors in Oncology

Copies of this poster and supplement obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

Anandaroop Dasgupta¹, Ankita Kaushik¹, Jens Grueger², Tomasz Burzykowski³, Sumeet Attri⁴, Barinder Singh⁵

¹Gilead Sciences Inc., Foster City, CA, USA; ²The CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA, USA; ³IDDI Louvain-la-Neuve, Louvain-la-Neuve, Belgium;

⁴PharmacoEvidence, Mohali, India; ⁵PharmacoEvidence, London, UK

Conclusions

- Our systematic literature review (SLR) demonstrates that overall, the acceptance of crossover trials in health technology assessment (HTA) submissions is contingent upon the robustness of survival, economic data, patient-reported outcomes, and safety
- Furthermore, the SLR demonstrates that it is the totality of evidence that helps in positive HTA decision-making
- Prespecifying the mitigation strategies and justification of any assumptions in the protocol or statistical analysis plan is viewed favorably by the HTA agencies
- Considerable variability exists in HTA adoption of mitigation strategies to address the impact of crossover or treatment switching on overall survival (OS) in oncology trials
- As crossover is an ethical approach to trial design for patients with life-threatening illnesses, it is important to align on approaches to inform HTA decision-making

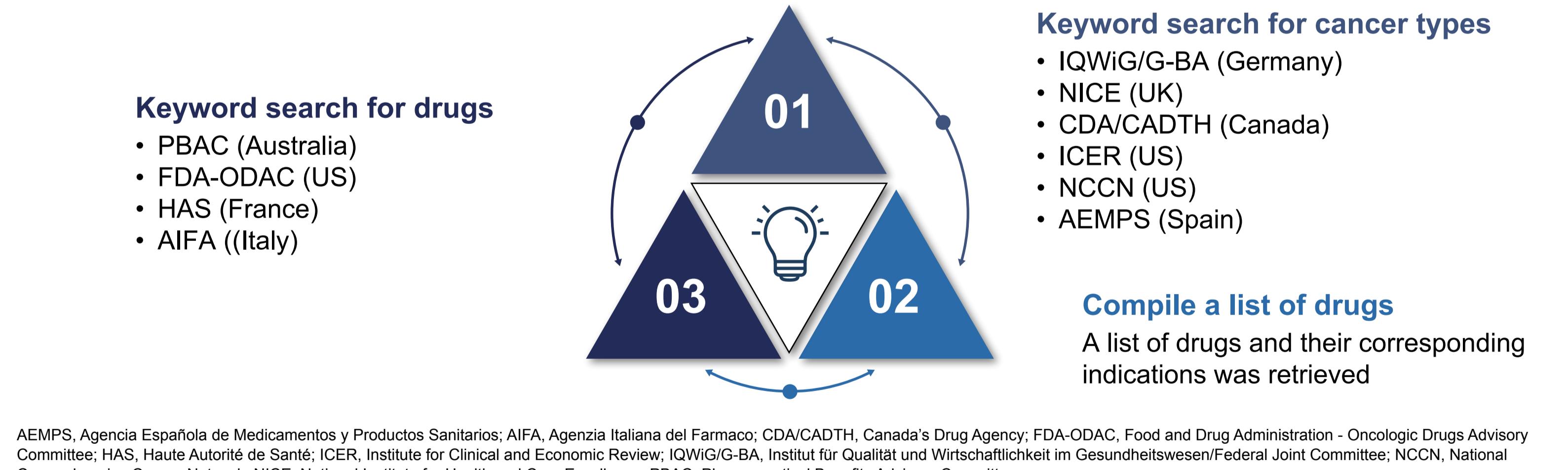
Plain Language Summary

- Participants in clinical trials often switch treatment from the control to the experimental group. As a result, health technology assessment agencies find it difficult to interpret the main results from such trials, eg, how long the patients lived overall
- This review looked at how different agencies evaluate cancer trials in which participants switch from control to experimental treatment once their disease worsens
- The study found that agencies use different methods to evaluate such cancer trials. All agencies preferred that adjustment methods be included in the trial protocol and statistical analysis plan rather than being applied after the trial was completed
- Certain agencies considered analyses that were conducted after trial completion, such as real-world data, to try to predict what the treatment effect on patients' survival would have been if they had not switched treatments
- Even without a clear survival benefit, treatments could still be considered beneficial based on factors like improved quality of life, better safety, or economic advantages

Introduction

- Crossover, a type of treatment switching, is common in oncology trials, in which patients often change therapies from the control to the experimental arm upon disease progression due to ethical reasons and to aid recruitment
- While progression-free survival (PFS) remains unaffected, switching from the control to the experimental arm confounds postprogression end points, in particular OS
- Such confounding may overestimate the apparent benefit of the control arm and, consequently, undervalue the added benefit and cost-effectiveness of the experimental therapy
- Adjustment for crossover is necessary to resolve the HTA decision problem and support well-informed treatment recommendations

Objective


- This SLR assessed how HTA bodies have evaluated and critiqued mitigation approaches to address treatment switching impacting OS, and acceptance of unaffected end points (eg, PFS), in clinical trials studying advanced/metastatic cancer of lung (non-small cell; NSCLC), breast (BC), prostate (PC), renal (RCC), colorectal (CRC), and gastrointestinal stromal tumors (GIST). It focuses specifically on crossover as a distinct subtype, given that evaluation of all forms of treatment switching varies across different HTA bodies

Methods

Search strategy and inclusion criteria

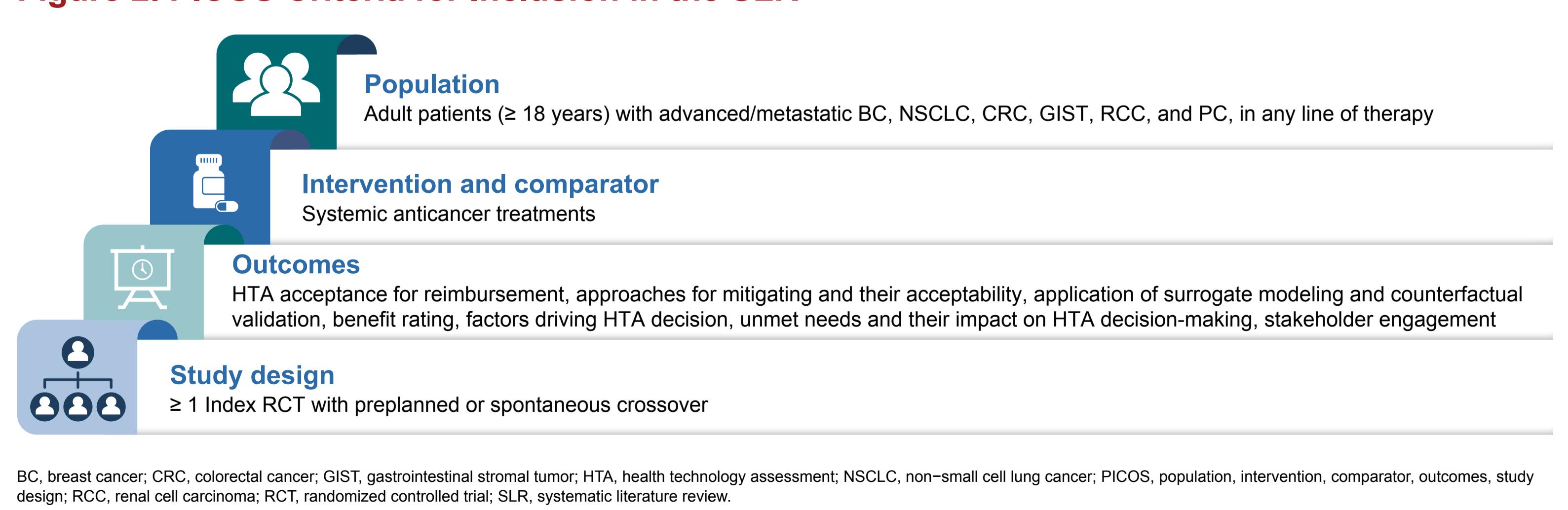

- The websites of the following HTA agencies, regulatory bodies, and clinical practice guidelines (CPG) were manually searched to retrieve published reports (manufacturer submission and final guidance) between January 1, 2013, and December 6, 2024:
 - HTA agencies:**
 - Institute for Clinical and Economic Review (ICER) – United States (US)¹
 - National Institute for Health and Care Excellence (NICE) – United Kingdom²
 - Haute Autorité de Santé (HAS) – France³
 - Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG); Federal Joint Committee (G-BA) – Germany⁴
 - Pharmaceutical Benefits Advisory Committee (PBAC) – Australia⁵
 - Canada's Drug Agency (CDA/CADTH) – Canada⁶
 - Agenzia Italiana del Farmaco (AIFA) – Italy⁷
 - Clinical practice guidelines:**
 - National Comprehensive Cancer Network (NCCN) – US⁸
 - Regulatory bodies:**
 - Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) – Spain⁹
 - US Food and Drug Administration - Oncologic Drugs Advisory Committee (FDA – ODAC) – US¹⁰
- Figures 1 and 2** present the search strategy and inclusion criteria, respectively, for the SLR. The non-English HTA/regulatory documents (HAS, G-BA, AEMPS, and AIFA) were searched for keywords in their native language (eg, crossover, cross over, cross-over, switch, croisé, perméut, wechsel, cruzado, cambi, etc). Documents meeting the inclusion criteria were then reviewed to extract relevant information

Figure 1. Search Strategy to Identify HTA Submissions

AEMPS, Agencia Española de Medicamentos y Productos Sanitarios; AIFA, Agenzia Italiana del Farmaco; CDA/CADTH, Canada's Drug Agency; FDA-ODAC, Food and Drug Administration - Oncologic Drugs Advisory Committee; HAS, Haute Autorité de Santé; ICER, Institute for Clinical and Economic Review; IQWiG-G-BA, Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen/Federal Joint Committee; NCCN, National Comprehensive Cancer Network; NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical Benefits Advisory Committee.

Figure 2. PICOS Criteria for Inclusion in the SLR

References:

- ICER: <https://icer.org/>
- NICE: <https://www.nice.org.uk/guidance/>
- HAS: <https://www.has-sante.fr/jcms/>
- IQWiG/G-BA: <https://www.iqwig.de/>
- PBAC: <https://www.pbs.gov.au/pbs/home>
- CDA/CADTH: <https://www.cda-amc.ca/>

- AIFA: <https://www.aifa.gov.it/en/>
- NCCN: <https://www.nccn.org/>
- AEMPS: <https://www.aemps.gob.es/edecamientosUsoHumano/>

- US FDA: <https://www.fda.gov/>
- All reference links were accessed on October 7, 2025.

Acknowledgments: This study was funded by Gilead Sciences, Inc. Editing and production assistance were provided by Parexel and funded by Gilead Sciences, Inc. We thank Sukriti Sharma from PharmacoEvidence, and Marissa Betts, Eva Gonzalez Viana, and Joanna Campbell from Evidera for support on this project.

Correspondence: Anandaroop Dasgupta, anandaroop.dasgupta1@gilead.com

Disclosures: AD reports employment and stock options in Gilead Sciences, Inc.