

Economic Evaluation of Tarlatamab as Second-Line Therapy for Metastatic Small Cell Lung Cancer: A United States Perspective

Hanrui Zheng, Ming Hu#

Email: 809482311@qq.com; Huming@scu.edu.cn

West China School of Pharmacy, Sichuan University, Chengdu, China

Introduction

Tarlatamab significantly prolonged overall survival compared with chemotherapy for small cell lung cancer (ES-SCLC) patients progressing during or after platinum-based chemotherapy. This study aimed to evaluate the cost-effectiveness of tarlatamab compared to chemotherapy as a second-line treatment for ES-SCLC from the perspective of the United States healthcare system.

Methods

A partitioned survival model was constructed to simulate disease progression, based on the DeLLphi-304 trial study. The model adopted a 28-day cycle length and a 10-year time horizon. Individual patient-level data were reconstructed and extrapolated using R software to support survival analysis. Direct medical costs, including expenditures associated with medications, laboratory testing, follow-up treatments, best supportive care, management of adverse events, end-of-life care, and other healthcare-related services were considered. Drug prices were obtained from sourced from the Drug Price Guide, while health utility estimates were extracted from previously published studies. The incremental cost-effectiveness ratio (ICER) served as the primary economic outcome, with model outputs also including total and incremental costs, as well as quality-adjusted life years (QALYs) and incremental QALYs. A willingness-to-pay (WTP) threshold was set at \$150,000.00/QALY for the United States One-way sensitivity analysis and probabilistic sensitivity analyses were conducted to evaluate the robustness of the model outcomes.

Table 1 Clinical Data

Survival model for tarlatamab		Survival model for chemotherapy	
Exponential model for OS	Rate=0.0487	Logistic model for OS	Shape=1.507
Lognormal model for PFS	Meanlog=1.414 Sdlog=1.113	Lognormal model for PFS	Scale=8.653 Meanlog=1.202

Table 2 Cost Data

Parameter	Value	Drug cost per mg		Parameter	Value	Cost of severe AEs, \$	
		Minimum	Maximum			Parameter	Value
Tarlatamab	1,611.28	1,289.02	1,933.54	Hyponatremia	0.29	0.23	0.35
Topotecan (injection)	747.79	598.23	897.35	Pneumonia	28,440.28	22,752.22	34,128.34
Topotecan (oral)	5,19.275	415.42	623.13	Fatigue	10,229.69	8,183.75	12,275.63
Lurbinectedin	8,667.59	6,934.07	10,401.11	Neutrophil count decrease	15,614	12,491.20	18,736.80
Nivolumab	139.55	111.64	167.46	Platelet count decrease	14,984	11,987.20	17,980.80
Pembrolizumab	252.24	201.79	302.69	Febrile neutropenia	29,315	23,452.00	35,178.00
Best support care per cycle	2,207.21	1,765.77	2,648.65	Thrombocytopenia	14,984	11,987.20	17,980.80
Follow-up per cycle	367.41	293.93	440.89	Leukopenia	14,984	11,987.20	17,980.80
End-of-life, one time	32,934.53	26,347.62	39,521.44	Neutropenia	15,614	12,491.20	18,736.80
				Anemia	9,079.75	7,263.80	10,895.70

Note: In the poster, the model parameters were adjusted, which slightly deviated from the abstract but did not affect the results.

Table 3 Incidence of AEs

Parameter	Value	Tarlatamab group		Parameter	Value	Chemotherapy group	
		Range	Range			Range	Range
Hyponatremia	5%	4.00%	6.00%	Hyponatremia	5%	4.00%	6.00%
Pneumonia	6%	4.80%	7.20%	Pneumonia	8%	6.40%	9.60%
Neutropenia	6%	4.80%	7.20%	Fatigue	7%	5.60%	8.40%
				Neutrophil count decrease	11%	8.80%	13.20%
				Platelet count decrease	8%	6.40%	9.60%
				Febrile neutropenia	11%	8.80%	13.20%
				Thrombocytopenia	11%	8.80%	13.20%
				Leukopenia	14%	11.20%	16.80%
				Neutropenia	23%	18.40%	27.60%
				Anemia	29%	23.20%	34.80%

Table 4 Utility

Parameter	Value	Utility	
		Minimum	Maximum
PFS	0.7	0.56	0.84
PD	0.6	0.48	0.72
Disutility			
Hyponatremia	-0.09	Febrile neutropenia	-0.2
Pneumonia	-0.07	Thrombocytopenia	-0.2
Fatigue	-0.07	Leukopenia	-0.2
Neutrophil count decrease	-0.2	Neutropenia	-0.09
Platelet count decrease	-0.05	Anemia	-0.07

Results

Treatment with tarlatamab yielded an additional 0.29 QALYs compared to chemotherapy, at an incremental cost of \$192,962.93. This resulted in an ICER of \$665,389.41 per QALY, which substantially exceeds the WTP threshold. The cost of tarlatamab emerged as a major influential parameter in the sensitivity analyses, demonstrating a substantial impact on the cost-effectiveness outcomes.

Table 5 Baseline Analysis of CEA

	Cost (\$)	Effectiveness (QALYs)	ICER (\$/QALY)
Tarlatamab	361542.49	1.08	665389.41
Chemotherapy	168579.56	0.79	

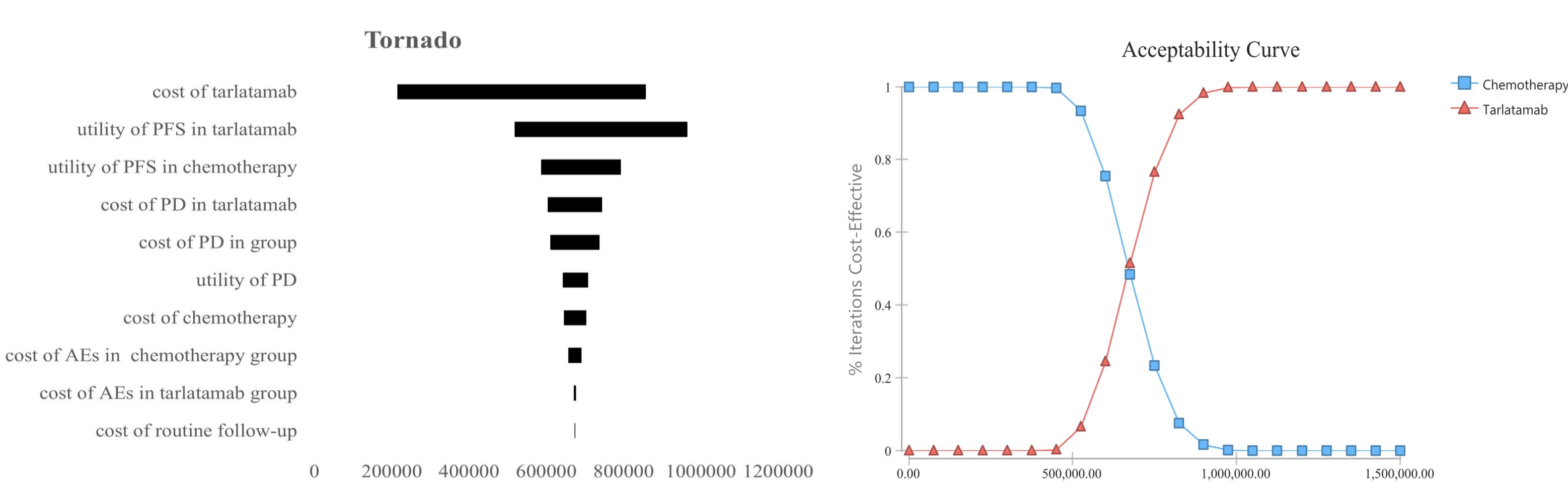


Figure 1 The Tornado diagram

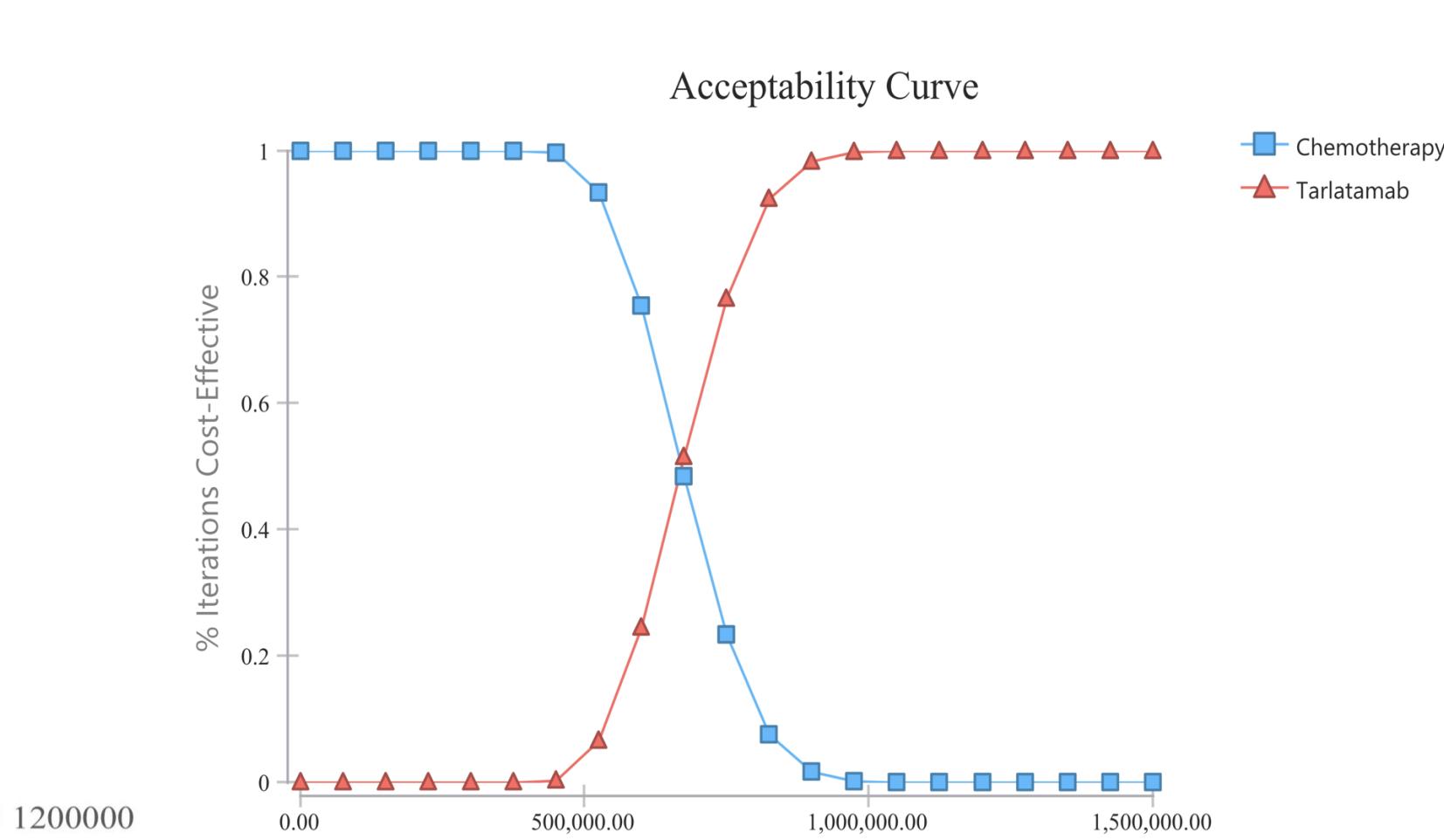


Figure 2 The cost-effectiveness acceptability curve

Conclusion

At a WTP threshold of \$150,000/QALY, tarlatamab was not considered a cost-effective option compared to chemotherapy for the treatment of recurrent ESCLC from the U.S. payer perspective.