Calibrating Large Language Model Probabilities
to Achieve Target Recall in Systematic Review
Screening
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A calibration workflow can transform raw large language model (LLM) probability outputs into a reliable, tunable classifier, enabling users to achieve specific
recall targets for systematic literature review (SLR) screening.

& Takeaway

Background &k Methods

e The ever-increasing volume of published medical research makes the manual identification e A human-labelled dataset of 2380 TIABs screened from a previous SLR was utilised. The primary objective of the screening exercise
of specific study designs, like randomised controlled trials (RCTs), for SLRs a significant was to identify all relevant RCTs based on the SLR protocol. Each record was labelled "Include” (is a relevant RCT) or "Exclude.".
bottleneck in generating timely clinical evidence. ' e The dataset was randomly split into three sets:

e While generative Al (GenAl) shows promise for automating the title and abstract (TIAB) o Training Set (20%): Used to train the calibration model.
screening phase, standard LLM classifiers lack the necessary control for high-stakes o Validation Set (20%): Used to select the optimal decision threshold for identifying RCTs.
applications where methodological rigor is paramount. %° o Test Set (60%): Withheld for the final, unbiased performance evaluation.

e In SLRs of interventions, missing an eligible record (a failure of recall) is often considered a e A multi-stage workflow was implemented:
more critical error than incorrectly including a non-eligible record (a failure of precision), as 1. Probability Extraction: The LLM (GPT-40) was prompted to classify if a record was an RCT and to generate token-level log
it can bias the final treatment effect estimates. °>* probabilities (log (P)) for its "Include" and "Exclude" decisions. These were then converted to class probabilities. 19=11

e Standard LLM outputs are often overconfident and do not provide a mechanism to prioritize 2. Calibration Model Training: An isotonic regression model was fitted on the training set to map the LLM's raw, often miscalibrated,
recall. This limitation hinders their adoption in evidence synthesis, where the goal is probabilities to more reliable scores. 87
comprehensive evidence retrieval. >’ 3. Threshold Selection: The calibrated model was applied to the validation set. Performance for RCT identification was assessed

e This experiment evaluates a workflow designed to calibrate an LLM's (GPT-40) probabilistic across all possible decision thresholds to find the optimal point that met our desired recall target (as visualized in the provided
outputs, creating a "control knob" to tune its performance specifically for the task of plot).
identifying eligible RCT TIAB records to a pre-defined recall target. ®° 4. Final Evaluation: The final calibrated model and the chosen threshold were applied to the unseen test set to measure the final

recall and precision for identifying likely RCTs.

ﬁ R eSSy ltS Actually Positive Actually Negative Actually Positive Actually Negative
e The calibration workflow successfully corrected the LLM's raw probability outputs, transforming them into a reliable Ié :§

probability score for identifying RCTs. o True Positives False Positives = True Positives False Positives
e A specific decision threshold was chosen from the validation set performance to maximize the identification of RCTs g 204 162 g 173 2

(high recall), as shown in Figure 3. IS &=

e The reliability of the final workflow was validated on the withheld test set, with results summarised in Table 1. The = =
model achieved the following performance metrics: S S
= False Negati True Negati = False Negati True Negative
o Recall: 83% (correctly identifying 83% of all true RCTs) S alse 4e2gat|ves e 9e7g5at|ves % AE 7639a Ves - 11?@ Ve
o Precision: 56% (of all studies flagged as RCTs, 56% were correct) § g
e These results confirm that the model can be configured to operate at a high-recall threshold, which is crucial for
minimising the risk of excluding relevant RCTs from the review. The trade-off is a moderate precision score, ensuring a Figure 1: Confusion matrix with 0.1 threshold Figure 2: Confusion matrix with 0.5 (Default) threshold

conservative approach.

e Using the 0.1 probability threshold in our example shows that the reviewer would have had to screen 162 extra | |
full-texts (and less studies excluded wrongly; Figure 1). This aligns more with practices of reviewers where records are | — g , i
included when the reviewer is unclear about whether the record should be included or excluded. e I *
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e In comparison, the default 0.5 probability threshold (i.e., without calibration or threshold tuning) produced a """"""""" "= ; — -
substantially lower recall, as shown in Table 1, indicating that this configuration is unsuitable for recall-sensitive tasks | 5 | = —
such as identifying RCTs in SLRs. However, this would have led to screening of an extra 271 full-texts (Figure 2).
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0.1 GPT4o 0.83 0.56 0.67 T iras | e \
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Table 1: Results for the test data set, 1428 abstracts Figure 3: Effect of threshold on performance for validation set Figure 4: Effect of threshold on performance for test set

-2 Discussion ~ % Conclusion

e This experiment demonstrates a critical advancement for Al use in evidence synthesis: moving from simple classification to e Raw LLM outputs are not reliable for automated classification but a robust
controlled, reliable, and tunable screening, specifically for the "gold standard" evidence of SLRs. #°

e The ability to set a high recall target directly addresses a primary concern of researchers and regulatory bodies regarding the
use of Al in SLRs—the fear of missing pivotal evidence.

calibration workflow resolves this issue.
e By calibrating probabilities and selecting a strategic decision threshold, an

e Crucially, the performance achieved through calibration and threshold tuning significantly surpasses the unoptimised results LLM can be transformed into a specialised screening tool tuned to achieve
from a default 0.5 probability cutoff. This highlights the necessity of such a workflow for practical deployment in SLRs. high recall for specific eligibility criteria, which can be used across many
e An 83% recall for RCTs ensures the vast majority of relevant trials proceed to full-text review. The corresponding 56% SLRs.
precision still filters out a significant portion of non-RCTs, drastically reducing the manual workload compared to a fully e This methodology provides the control and transparency needed to

manual screen.
e The calibrated workflow could be applied to the same eligibility criteria for other reviews.
e This "control knob" is especially useful for managing a workflow involving a single reviewer assisted with an Al-reviewer, as it

confidently integrate the calibrated outputs from LLM processing into the
SLR workflow, ensuring both efficiency and methodological rigor.

serves as a safeguard to prevent eligible publications from being mistakenly classified as ineligible. e This approach strengthens the case for using GenAl to accelerate evidence
e The workflow was optimised to maximise recall, which does not necessarily minimise reviewer workload; '? focusing solely on generation, allowing researchers to focus on higher-level synthesis and
workload reduction or a single performance metric (e.g., F1 score) may overlook other important factors such as tool analysis of eligible evidence to inform clinical and policy decisions.

sensitivity, user proficiency, and practical trade-offs.
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