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Takeaway A calibration workflow can transform raw large language model (LLM) probability outputs into a reliable, tunable classifier, enabling users to achieve specific 
recall targets for systematic literature review (SLR) screening.

● The ever-increasing volume of published medical research makes the manual identification 
of specific study designs, like randomised controlled trials (RCTs), for SLRs a significant 
bottleneck in generating timely clinical evidence. 1

● While generative AI (GenAI) shows promise for automating the title and abstract (TIAB) 
screening phase, standard LLM classifiers lack the necessary control for high-stakes 
applications where methodological rigor is paramount. 2,6

● In SLRs of interventions, missing an eligible record (a failure of recall) is often considered a 
more critical error than incorrectly including a non-eligible record (a failure of precision), as 
it can bias the final treatment effect estimates. 3,4

● Standard LLM outputs are often overconfident and do not provide a mechanism to prioritize 
recall. This limitation hinders their adoption in evidence synthesis, where the goal is 
comprehensive evidence retrieval. 5,7–9

● This experiment evaluates a workflow designed to calibrate an LLM's (GPT-4o) probabilistic 
outputs, creating a "control knob" to tune its performance specifically for the task of 
identifying eligible RCT TIAB records to a pre-defined recall target. 8,9

Background
● A human-labelled dataset of 2380 TIABs screened from a previous SLR was utilised. The primary objective of the screening exercise 

was to identify all relevant RCTs based on the SLR protocol. Each record was labelled "Include" (is a relevant RCT) or "Exclude.".
● The dataset was randomly split into three sets:

○ Training Set (20%): Used to train the calibration model.
○ Validation Set (20%): Used to select the optimal decision threshold for identifying RCTs.
○ Test Set (60%): Withheld for the final, unbiased performance evaluation.

● A multi-stage workflow was implemented:

Methods

1. Probability Extraction: The LLM (GPT-4o) was prompted to classify if a record was an RCT and to generate token-level log 
probabilities (log (P)) for its "Include" and "Exclude" decisions. These were then converted to class probabilities. 10–11

2. Calibration Model Training: An isotonic regression model was fitted on the training set to map the LLM's raw, often miscalibrated, 
probabilities to more reliable scores. 8,9

3. Threshold Selection: The calibrated model was applied to the validation set. Performance for RCT identification was assessed 
across all possible decision thresholds to find the optimal point that met our desired recall target (as visualized in the provided 
plot).

4. Final Evaluation: The final calibrated model and the chosen threshold were applied to the unseen test set to measure the final 
recall and precision for identifying likely RCTs.

● The calibration workflow successfully corrected the LLM's raw probability outputs, transforming them into a reliable 
probability score for identifying RCTs.

● A specific decision threshold was chosen from the validation set performance to maximize the identification of RCTs 
(high recall), as shown in Figure 3.

● The reliability of the final workflow was validated on the withheld test set, with results summarised in Table 1. The 
model achieved the following performance metrics:

○ Recall: 83% (correctly identifying 83% of all true RCTs)

○ Precision: 56% (of all studies flagged as RCTs, 56% were correct)

● These results confirm that the model can be configured to operate at a high-recall threshold, which is crucial for 
minimising the risk of excluding relevant RCTs from the review. The trade-off is a moderate precision score, ensuring a 
conservative approach.

● Using the 0.1 probability threshold in our example shows that the reviewer would have had to screen 162 extra 
full-texts (and less studies excluded wrongly; Figure 1). This aligns more with practices of reviewers where records are 
included when the reviewer is unclear about whether the record should be included or excluded.

● In comparison, the default 0.5 probability threshold (i.e., without calibration or threshold tuning) produced a 
substantially lower recall, as shown in Table 1, indicating that this configuration is unsuitable for recall-sensitive tasks 
such as identifying RCTs in SLRs. However, this would have led to screening of an extra 21 full-texts (Figure 2).

Results
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Figure 1: Confusion matrix with 0.1 threshold
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Figure 2: Confusion matrix with 0.5 (Default) threshold

Figure 3: Effect of threshold on performance for validation set Figure 4: Effect of threshold on performance for test set

Threshold Model Recall Precision F1-score

0.1 GPT4o 0.83 0.56 0.67

0.5 (Default) GPT4o 0.70 0.89 0.79

● This experiment demonstrates a critical advancement for AI use in evidence synthesis: moving from simple classification to 
controlled, reliable, and tunable screening, specifically for the "gold standard" evidence of SLRs. 4,5

● The ability to set a high recall target directly addresses a primary concern of researchers and regulatory bodies regarding the 
use of AI in SLRs—the fear of missing pivotal evidence.

● Crucially, the performance achieved through calibration and threshold tuning significantly surpasses the unoptimised results 
from a default 0.5 probability cutoff. This highlights the necessity of such a workflow for practical deployment in SLRs.

● An 83% recall for RCTs ensures the vast majority of relevant trials proceed to full-text review. The corresponding 56% 
precision still filters out a significant portion of non-RCTs, drastically reducing the manual workload compared to a fully 
manual screen.

● The calibrated workflow could be applied to the same eligibility criteria for other reviews.
● This "control knob" is especially useful for managing a workflow involving a single reviewer assisted with an AI-reviewer, as it 

serves as a safeguard to prevent eligible publications from being mistakenly classified as ineligible.
● The workflow was optimised to maximise recall, which does not necessarily minimise reviewer workload; 12 focusing solely on 

workload reduction or a single performance metric (e.g., F1 score) may overlook other important factors such as tool 
sensitivity, user proficiency, and practical trade-offs.

Table 1: Results for the test data set, 1428 abstracts

Discussion Conclusion
● Raw LLM outputs are not reliable for automated classification but a robust 

calibration workflow resolves this issue.
● By calibrating probabilities and selecting a strategic decision threshold, an 

LLM can be transformed into a specialised screening tool tuned to achieve 
high recall for specific eligibility criteria, which can be used across many 
SLRs.

● This methodology provides the control and transparency needed to 
confidently integrate the calibrated outputs from  LLM processing  into the 
SLR workflow, ensuring both efficiency and methodological rigor.

● This approach strengthens the case for using GenAI to accelerate evidence 
generation, allowing researchers to focus on higher-level synthesis and 
analysis of eligible evidence to inform clinical and policy decisions.
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