

# **The Frequency Of Mentions And Impact Of Patient Input In HTA Decision Making In Cell And Gene Therapies Across The UK, Canada, & Australia**

Authors: I. Malekou, S. Sanseau, P. Freeman, S. Morrison



Presentation

# The aim of this research was to understand the influence of patient input in HTA decision making

Patient input is considered in health technology assessments (HTAs) by:

| Country                                                                                      | HTA Body                                                                                        |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|  England    | National Institute for Health and Care Excellence (NICE)                                        |
|  Canada     | Canada's Drug Agency (CDA)                                                                      |
|  Australia | Medical Services Advisory Committee (MSAC)<br>Pharmaceutical Benefits Advisory Committee (PBAC) |

## Research Objective

This research explored the frequency of mentions and impact of patient input in HTA reports of cell and gene therapies (CGTs)

Two types of patient input were considered:



Patient-reported outcomes (PRO)



Supplementary patient inputs (SPI)

Abbreviations: CDA=Canada's Drug Agency; CGT=Cell and gene therapies; HTA=Health Technology Assessments; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; PBAC=Pharmaceutical Benefits Advisory Committee; SPI=Supplementary patient inputs; PRO=Patient-reported outcomes.

# Analysis included 20 HTA appraisals of CGTs spanning seven indications

1

## HTA report identification

HTA reports of CGTs assessed by NICE, CDA and PBAC or MSAC since 2020 were identified



- Spinal Muscular Atrophy<sup>1-5</sup>
- Pre-symptomatic Spinal Muscular Atrophy<sup>2,6-8</sup>



- Large B-cell Lymphoma<sup>9-12</sup>
- Follicular Lymphoma<sup>13-15</sup>



- Mantle Cell Lymphoma<sup>16-18</sup>
- B-cell Acute Lymphoblastic Leukaemia<sup>19-22</sup>



- Haemophilia B<sup>23-25</sup>

2

## Frequency Analysis

A frequency analysis of predefined patient input terms was conducted to quantify their mentions in each HTA report

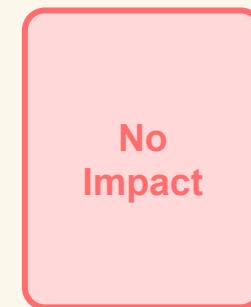
A negative binomial generalized linear model was applied to compare mention frequencies across HTA bodies

3

## Contextual Analysis

A large language learning model (LLM\*) was employed to extract relevant quotes and assess their relevance to each decision.

The generated outputs were validated through human review


Outcomes characterised the influence of PRO & SPI on decision making as follows:



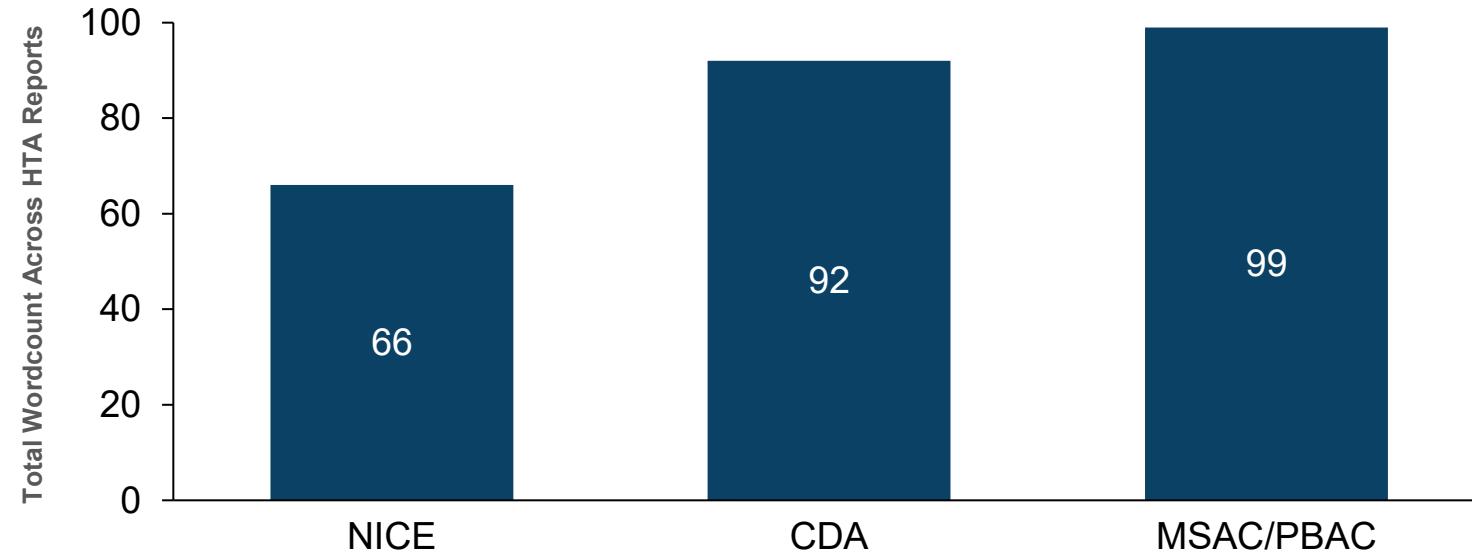
Direct Impact



Indirect Impact



No Impact


\* OpenAI o4-mini. Abbreviations: CDA=Canada's Drug Agency; CGT=Cell and gene therapies; HTA=Health Technology Assessments; LLM= Language Learning Model; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; PBAC=Pharmaceutical Benefits Advisory Committee; QALY= Quality-adjusted life year; SPI=Supplementary patient inputs; PRO=Patient-reported outcomes.

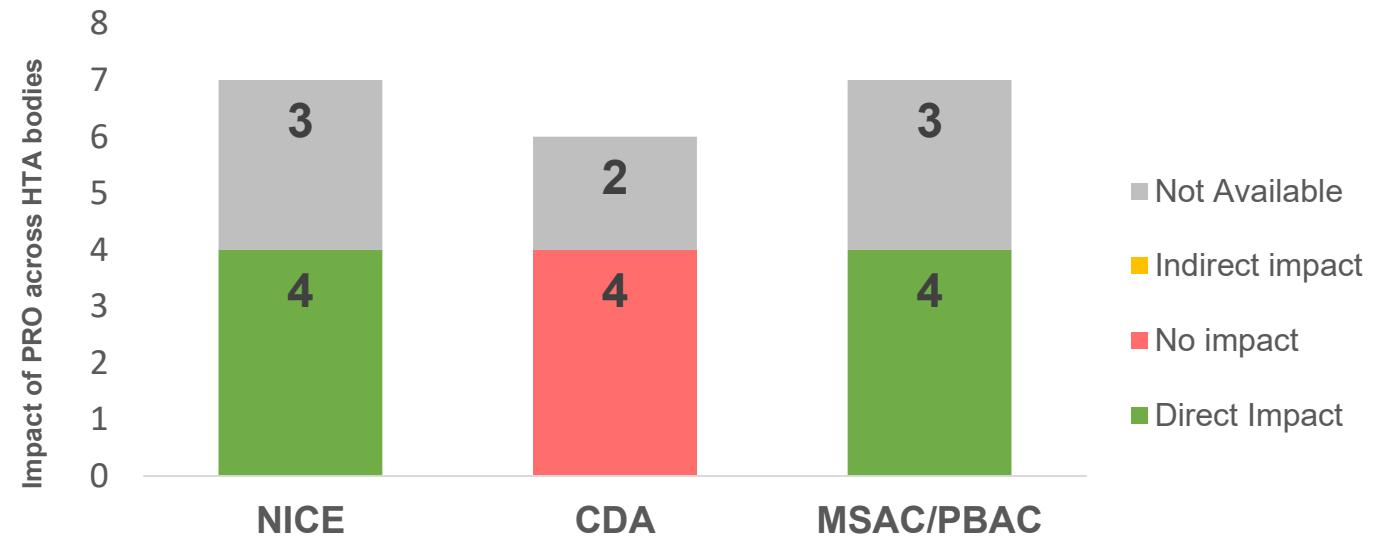
# No differences were observed in the frequency of patient-related terms across HTA bodies

## Mentions of Patient Input in HTA Reports

Example words and phrases included in the frequency analysis:

- *“Patient input”*
- *“Public consultation”*
- *“Patient-reported outcomes”*
- *“Quality of life”*




The variation in the total wordcount of predefined relevant terms, included in HTA reports across HTA bodies, was not statistically significant (NS) ( $P>0.05$ )

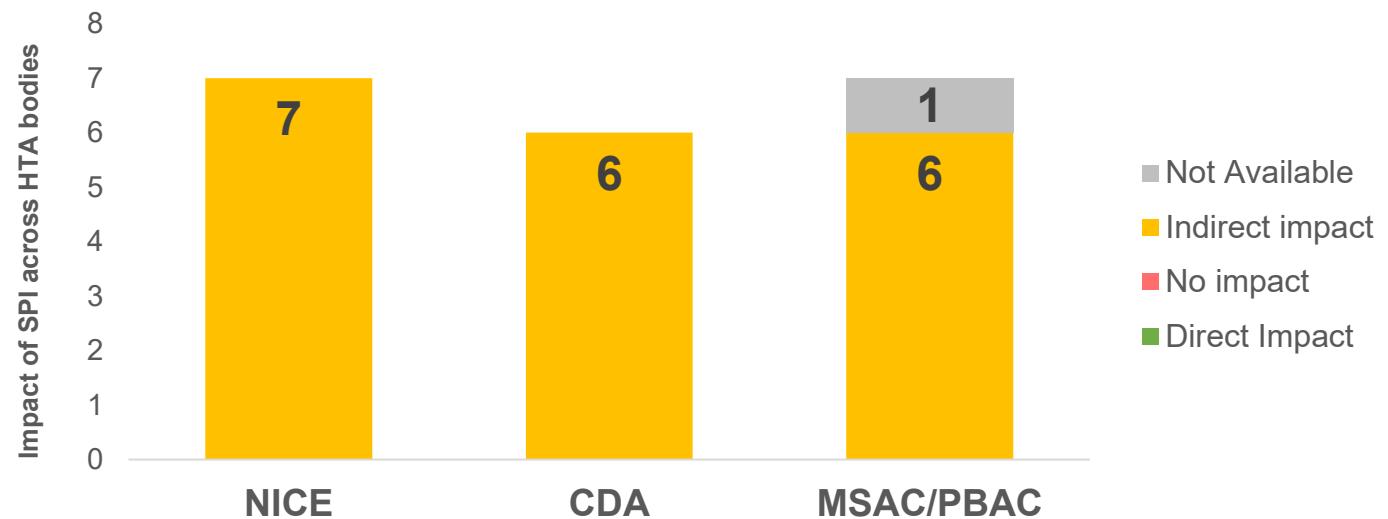
Abbreviations: CDA=Canada's Drug Agency; HTA=Health Technology Assessments; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; NS=Not statistically significant; PBAC=Pharmaceutical Benefits Advisory Committee.

# PROs directly influenced NICE and MSAC/PBAC, but had no impact on CDA decisions due to data uncertainties

## Impact of Patient Reported Outcomes

- PRO data were unavailable in 8 of 20 HTA appraisals
- Among the remaining 12 appraisals, PROs directly influenced 8 HTA outcomes from NICE and MSAC/PBAC
- In 4 CDA appraisals, PROs had no direct impact due to uncertainties in data robustness




Where PROs were available and robust, they directly influenced the HTA outcome through their incorporation in economic analyses

Abbreviations: CDA=Canada's Drug Agency; HTA=Health Technology Assessments; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; PBAC=Pharmaceutical Benefits Advisory Committee; PRO=Patient-reported outcomes.

# Although considered in the majority of reports, SPIs had no direct influence on HTA outcomes

## Impact of Supplementary Patient Inputs

- SPI was available in 19 of 20 HTA appraisals and had an indirect influence on the HTA outcome**
- Only one appraisal did not reference SPI**



\*Tecartus MSAC/PBAC appraisal in Mantle Cell Lymphoma. Abbreviations: CDA=Canada's Drug Agency; HTA=Health Technology Assessments; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; PBAC=Pharmaceutical Benefits Advisory Committee; PRO=Patient-reported outcomes.

# Findings reinforce the value of PROs and highlight opportunities to strengthen SPI influence in shaping more patient-centered HTA

## Key Conclusions

1

While **variation in patient input mentions** across HTA bodies **was not statistically significant**, distinct **patterns were observed**

2

**Robust PROs directly influenced MSAC/PBAC and NICE assessments**  
**In CDA appraisals, uncertainties in PRO robustness reduced their impact**, highlighting differing interpretations across HTA bodies

3

**SPIs**, though only indirectly impactful, were **consistently considered in CGT assessments**, reflecting their growing role in decision-making

Abbreviations: CDA=Canada's Drug Agency; HTA=Health Technology Assessments; CGT= Cell and Gene Therapy; MSAC=Medical Services Advisory Committee; NICE=National Institute for Health and Care Excellence; PBAC=Pharmaceutical Benefits Advisory Committee; PRO=Patient-reported outcomes; SPI= Supplementary Patient Input.

# Sources

---

1. Zolgensma® NICE guidance HST15 (Apr 2023);
2. Zolgensma® CADTH Recommendation (Mar 2021);
3. Zolgensma® PBAC Public Summary Document (Sep 2021);
4. Zolgensma® PBAC Public Summary Document (May 2021);
5. Zolgensma® PBAC Public Summary Document (Nov 2020);
6. Zolgensma® NICE guidance HST24 (Apr 2023);
7. Zolgensma® PBAC Public Summary Document (Jul 2023);
8. Zolgensma® PBAC Public Summary Document (Nov 2022);
9. Yescarta® NICE guidance TA895 (Jun 2023);
10. Yescarta ® CADTH Recommendation (Feb 2023);
11. Yescarta ® MSAC Public Summary Document (Apr 2024);
12. Yescarta ® MSAC Public Summary Document (Mar 2023);
13. Yescarta® NICE guidance TA894 (Jun 2023);
14. Yescarta ® CADTH Recommendation (Nov 2023);
15. Yescarta ® MSAC Public Summary Document (Jan 2020);
16. Tecartus® NICE guidance TA677 (Feb 2021);
17. Tecartus® CADTH Recommendation (Aug 2021);
18. Tecartus® MSAC Public Summary Document (Jul 2023);
19. Tecartus® NICE guidance TA893 (Jun 2023);
20. Tecartus® CADTH Recommendation (Aug 2023);
21. Tecartus® MSAC Public Summary Document (Nov 2022);
22. Tecartus® MSAC Public Summary Document (Nov 2023);
23. Hemgenix® NICE guidance TA989 (Jul 2024);
24. Hemgenix® CADTH Recommendation (Mar 2024);
25. Hemgenix® MSAC Public Summary Document (Aug 2024)