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ML framework (Figure 1)
• We modelled early treatment discontinuation by training a supervised ML model based on 10,000+ 

GA patients; it was trained on 8,134 patients, tested on 2,034 patients (80–20% split) 
• Model inputs included demographics, clinical history, and treatment patterns.
• We used SHapley Additive exPlanations (SHAP) to interpret patient-level risk drivers and applied K-

means clustering on SHAP values to group similar patients. We identified five distinct patient 
profiles based on shared dropout risk factors.

In addition, we can mine the free-text field within the electronic medical record (EMR) to discover further diagnostics and 
characteristics like subretinal fluid and vitreomacular traction (VMT)
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Objectives
• The main objective of this study was to develop a machine learning algorithm to identify 

patients at risk of dropout.
• For each patient, the algorithm would produce a risk score for adherence based on their 

individual patient journey.
• By utilizing a data-driven approach, we sought to explore the clinical, behavioral, and 

psychosocial factors behind patients’ decisions to be non-adherent.
• The ultimate goal was to subsequently create a toolkit for healthcare professionals to 

implement a tailored retention strategy.
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Introduction
Geographic atrophy
• Geographic atrophy (GA) is an advanced form of age-related macular degeneration.
• Approximately 1 million US adults are affected in at least one eye.1

• Risk increases with age (~0.3% of persons aged 65–74 years; ~4% of persons aged ≥ 85 years).2

• It is a progressive disease that results in irreversible loss of vision over time.3

Treatment
• Frequency of administration depends on the drug and regimen selected, but the current mainstay of 

treatment is intravitreal injections directly into the eye every 25–60 days.4

• The main goal of this treatment is to delay GA progression.
• While effective, studies have shown 30%–40% of patients discontinue treatment within a year.5

Problem
• As treatment is only effective if maintained, relatively high rates of discontinuation reduce patient 

long-term quality of life.6

• However, healthcare professionals do not typically have the time or resources to intensively 
monitor their patients, and thus support their patients’ decisions to adhere to treatment.5

• Early discontinuation also affects the accuracy and reliability of clinical studies of treatment for 
GA.7

• Therefore, decision rules/algorithms targeting patient profiles at elevated risk of discontinuation 
may represent an efficient means to improve adherence and subsequently optimize positive 
outcomes.

• Specifically, if these algorithms were built on electronic, real-world, health data, they could be 
automated at various points-of-care to maximize their impact on treatment adherence. 

Methods
Data source – Vestrum retina database
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• Demographics: Age, gender, smoking status, alcohol use
• Treatment history: Medications/treatment regimens (prior and present) and related procedures
• Disease characteristics: Relevant disease (e.g., GA) and comorbidities, year and severity of 

diagnosis, disease progression, adverse events
• Patient-reported outcomes: Visual acuity, central retinal thickness, fluid, surgery outcomes, 

change in therapy, lost to follow-up
• Targeted adverse events: infection (uveitis, endophthalmitis), retinal detachments, 

hemorrhaging, disease development, and progression
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Figure 1. Overview of risk profiling model and real-world impact

Results
ML model results on patients at risk of GA treatment dropout (Figure 3)
• Prediction target was discontinuation within 120 days.
• The receiver operating characteristic (ROC) area under the curve (AUC) was 0.62; the precision-

recall AUC was 0.74, with recall of 0.98 and precision of 0.64
• Overall accuracy was 64%.

Figure 3. Precision-recall curve by supervised machine learning model identifying 
patients at risk of GA treatment dropout

Patient profiles comparison (Figure 4)
Profile 3—Lower GA treatment dropout 
• 56% of patients in this cluster (which represents 26% of the total population) discontinued treatment 

within 120 days.
• They had relatively better initial vision, stable healthcare access, less severe disease (bilateral GA/ 

fovea patterns), slower disease progression, and most were treatment naïve (i.e., first GA treatment 
ever).

Profile 5—Higher GA treatment dropout
• 75% of patients in this cluster (which represents 14% of the total population) discontinued treatment 

within 120 days.
• They had relatively poorer initial vision, limited/inadequate healthcare coverage, among other 

disease traits.

Figure 4. Patient profiles identified as at risk of GA treatment dropout
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Conclusions
• Patient profiles translated complex ML outputs and diverse real-world-data into clear, 

actionable subgroups.
• The profiles revealed both who is at risk or has a specific need, and why, enabling targeted 

strategies.
• The GA discontinuation example shows how prediction  explanation  segmentation can 

improve persistence and outcomes.
• Profiling is flexible—applicable to risk, engagement, value, and other use cases across the 

patient journey.
• Embedding profiles into workflows supports precision interventions, optimizes resources, 

and strengthens real-world evidence.

Abbreviations: ML = machine learning; SHAP = SHapley Additive exPlanations
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Abbreviations: PR AUC= precision-recall area under the curve
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